Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(02): 203-206
DOI: 10.1055/s-0037-1610680
DOI: 10.1055/s-0037-1610680
letter
Copper-Catalyzed C–H Stereoselective Cyanation of Alkenes by Using an α-Iminonitrile as a Cyanating Reagent
This work was supported by the PAPD (A project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions).Further Information
Publication History
Received: 20 September 2018
Accepted after revision: 18 November 2018
Publication Date:
13 December 2018 (online)

Abstract
The first copper-catalyzed cyanation through alkene C–H bond activation by using an α-iminonitrile as a cyanating agent has been realized. The approach efficiently constructs acrylonitriles in good yields with the advantages of high regioselectivity, cost-benefit, and operational simplicity.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610680.
- Supporting Information
-
References and Notes
- 1a Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
- 1b Seeberger LC, Hauser RA. Expert Rev. Neurother. 2009; 9: 929
- 1c De Clercq E. Expert Opin. Emerging Drugs 2005; 10: 241
- 2a Palomo C, Aizpurua JM, García JM, Ganboa I, Cossio FP, Lecea B, Lōpez C. J. Org. Chem. 1990; 55: 2498
- 2b Kojima S, Fukuzaki T, Yamakawa A, Murai Y. Org. Lett. 2004; 6: 3917
- 2c Palomo C, Aizpurua JM, Aurrekoetxea N. Tetrahedron Lett. 1990; 31: 2209
- 3a Zhang TY, O’Toole JC, Dunigan JM. Tetrahedron Lett. 1998; 39: 1461
- 3b Kojima S, Kawaguchi K, Matsukawa S, Uchida K, Akiba K. Chem. Lett. 2002; 31: 170
- 3c Fang F, Li Y, Tian S.-K. Eur. J. Org. Chem. 2011; 2011: 1084
- 3d Ando K, Okumura M, Nagaya S. Tetrahedron Lett. 2013; 54: 2026
- 4 Zhou S, Addis D, Das S, Junge K, Beller M. Chem. Commun. 2009; 4883
- 5a Nakao Y, Yada A, Ebata S, Hiyama T. J. Am. Chem. Soc. 2007; 129: 2428
- 5b Minami Y, Yoshiyasu H, Nakao Y, Hiyama T. Angew. Chem. Int. Ed. 2013; 52: 883
- 5c Yang X, Arai S, Nishida A. Adv. Synth. Catal. 2013; 355: 2974
- 5d Cheng Y.-n, Duan Z, Yu L, Li Z, Zhu Y, Wu Y. Org. Lett. 2008; 10: 901
- 6a Crowe WE, Goldberg DR. J. Am. Chem. Soc. 1995; 117: 5162
- 6b Randl S, Gessler S, Wakamatsu H, Blechert S. Synlett 2001; 430
- 7a Yamaguchi K, Fujiwara H, Ogasawara Y, Kotani M, Mizuno N. Angew. Chem. Int. Ed. 2007; 46: 3922
- 7b Ishihara K, Furuya Y, Yamamoto H. Angew. Chem. Int. Ed. 2002; 41: 2983
- 8a Pradal A, Evano G. Chem. Commun. 2014; 50: 11907
- 8b Alterman M, Hallberg A. J. Org. Chem. 2000; 65: 7984
- 8c Saha D, Adak L, Mukherjee M, Ranu BC. Org. Biomol. Chem. 2012; 10: 952
- 8d Powell KJ, Han L.-C, Sharma P, Moses JE. Org. Lett. 2014; 16: 2158
- 9a Wang Z, Chang S. Org. Lett. 2013; 15: 1990
- 9b Zhang Z, Liebeskind LS. Org. Lett. 2006; 8: 4331
- 9c Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2011; 50: 519
- 10a Kim D.-S, Park W.-J, Jun C.-H. Chem. Rev. 2017; 117: 8977
- 10b Kim H, Chang S. ACS Catal. 2016; 6: 2341
- 10c Liu J.-D, Chen G.-S, Tan Z. Adv. Synth. Catal. 2016; 358: 1174
- 10d Ma C, Fang P, Mei T.-S. ACS Catal. 2018; 8: 7179
- 10e Qin Y, Zhu L.-H, Luo S.-Z. Chem. Rev. 2017; 117: 9433
- 10f Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
- 11a Feng C, Feng D, Loh T.-P. Chem. Commun. 2015; 51: 342
- 11b Chaitanya M, Anbarasan P. Org. Lett. 2015; 17: 3766
- 11c Hong X, Wang H, Qian G, Tan Q, Xu B. J. Org. Chem. 2014; 79: 3228
- 11d Su W, Gong T.-J, Xiao B, Fu Y. Chem. Commun. 2015; 51: 11848
- 11e Boultadakis-Arapinis M, Hopkinson MN, Glorius F. Org. Lett. 2014; 16: 1630
- 12a Wen Z.-K, Xu Y.-H, Loh T.-P. Chem. Sci. 2013; 4: 4520
- 12b Shang X, Liu Z.-Q. Chem. Soc. Rev. 2013; 42: 3253
- 12c Bai Y, Zeng J, Cai S, Liu X.-W. Org. Lett. 2011; 13: 4394
- 12d Gigant N, Gillaizeau I. Org. Lett. 2012; 14: 3304
- 12e Chen Y, Wang F, Jia A, Li X. Chem. Sci. 2012; 3: 3231
- 12f Moon Y, Kwon D, Hong S. Angew. Chem. Int. Ed. 2012; 51: 11333
- 12g Min M, Kim Y, Hong S. Chem. Commun. 2013; 49: 196
- 13a Li F, Yu C, Zhang J, Zhong G. Org. Lett. 2016; 18: 4582
- 13b Wu J, Xu W, Yu Z.-X, Wang J. J. Am. Chem. Soc. 2015; 137: 9489
- 14a Kong X, Xu B. Org. Lett. 2018; 20: 4495
- 14b Yu D.-G, Gensch T, de Azambuja F, Vásquez-Céspedes S, Glorius F. J. Am. Chem. Soc. 2014; 136: 17722
- 15a Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
- 15b López R, Palomo C. Angew. Chem. Int. Ed. 2015; 54: 13170
- 16 Wang R, Falck JR. Chem. Commun. 2013; 49: 6516
- 17a Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
- 17b Ackermann L. J. Org. Chem. 2014; 79: 8948
- 17c Nakao Y. Chem. Rec. 2011; 11: 242
- 17d Gao K, Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
- 17e Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
- 18a Chen Z.-B, Zhang Y, Yuan Q, Zhang F.-L, Zhu Y.-M, Shen J.-K. J. Org. Chem. 2016; 81: 1610
- 18b Chen Z.-B, Zhang F.-L, Yuan Q, Chen H.-F, Zhu Y.-M, Shen J.-K. RSC Adv. 2016; 6: 64234
- 18c Shi Y.-L, Yuan Q, Chen Z.-B, Zhang F.-L, Liu K, Zhu Y.-M. Synlett 2017; 29: 359
- 19 3-Phenyl-3-pyridin-2-ylacrylonitrile; Typical ProcedureA solution of 1a (0.50 mmol), α-iminonitrile 2a (139.5 mg, 0.75 mmol), and Cu(TFA)2 (1.0 mmol) in THF (2.0 mL) was stirred at 120 °C for 24 h, then cooled to r.t. The solvent was then evaporated in vacuo, and the residue was purified by column chromatography [silica gel, PE–EtOAc (9:1)] to give a brown oil; yield: 75 mg (73%).1H NMR (400 MHz, CDCl3): δ = 8.7 (d, J = 3.6 Hz, 1 H), 7.8 (t, J = 7.3 Hz, 1 H), 7.5 (d, J = 7.8 Hz, 1 H), 7.4–7.3 (m, 4 H), 7.3 (d, J = 7.2 Hz, 2 H), 5.8 (s, 1 H). 13C NMR (151 MHz, CDCl3): δ = 161.2 (s), 155.1 (s), 150.0 (s), 137.7 (s), 136.8 (s), 130.5 (s), 128.8 (s), 128.4 (s), 125.0 (s), 124.4 (s), 117.4 (s), 97.3.
For some reviews on C–H activation, see:
For Rh-catalyzed C–H activation reactions of alkenes, see:
For Pd-catalyzed C–H activation reactions of alkenes, see:
For Ru-catalyzed C–H activation reactions of alkenes, see:
For selected reviews, see: