Synlett, Table of Contents Synlett 2019; 30(02): 156-160DOI: 10.1055/s-0037-1611692 letter © Georg Thieme Verlag Stuttgart · New YorkExploration and Development of a C–H-Activated Route to Access the [1,2]Dithiolo[4,3-b]indole-3(4H)-thione Core and Related Derivatives Authors Author Affiliations Christopher R. M. Asquith * a School of Pharmacy, Faculty of Life Sciences, University College London, London, WC1N 1AX, UK Email: ucnvcrm@ucl.ac.uk Email: s.hilton@ucl.ac.uk Lidia S. Konstantinova b N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia c Nanotechnology Education and Research Center, South Ural State University, Lenina Ave. 76, Chelyabinsk, Russia Graham J. Tizzard d School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK Tuomo Laitinen e School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland Simon J. Coles d School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK Oleg A. Rakitin b N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia c Nanotechnology Education and Research Center, South Ural State University, Lenina Ave. 76, Chelyabinsk, Russia Stephen T. Hilton* a School of Pharmacy, Faculty of Life Sciences, University College London, London, WC1N 1AX, UK Email: ucnvcrm@ucl.ac.uk Email: s.hilton@ucl.ac.uk Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Abstract A robust procedure for the production of [1,2]dithiolo[4,3-b]indole-3(4H)-thione analogues using a DABCO/S2Cl2 complex as a sulfur source via a C–H activated approach. Key words Key wordsindole - indole sulfides - sulfur-nitrogen heterocycles - fused 3H-1,2-dithiole-3-thiones - C–H activation - disulfur dichloride Full Text References References and Notes 1 Current address - Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA 2 de Sá Alves FR, Barreiro EJ, Fraga CA. Mini-Rev. Med. Chem. 2009; 9: 782 3a Rewcastle GW, Denny WA. Heterocycles 1994; 37: 701 3b Palmer BD, Rewcastle GW, Thompson AM, Boyd M, Showalter HD, Sercel AD, Fry DW, Kraker AJ, Denny WA. J. Med. Chem. 1995; 38: 58 3c Dobrusin EM, Showalter HD. H, Denny WA, Rewcastle GW, Tercel M, Thompson AM. US 5464861, 1994 4 Greenhouse RJ, Muchowski JM. US 4654360, 1987 5 Hosoi MK, Fumio NO, Ichikawa HT, Ichikawa KN, Okazaki SN. US 4743609, 1988 6 Asquith CR. M, Meli ML, Konstantinova LS, Laitinen T, Poso A, Rakitin OA, Hofmann-Lehmann R, Allenspach K, Hilton ST. Bioorg. Med. Chem. Lett. 2015; 25: 1352 7 Rewcastle GW, Janosik T, Bergman J. Tetrahedron 2001; 57: 7185 8a Friary RJ, Zhou G, Shih N, Chen L, Shu Y, Tong L, Lavey BJ, Wong MK. C, Kozlowski JA, Shankar BB. US 200410013, 2004 8b Shankar BB, Gilbert E, Huang C, Mccombie S, Shih N, Kozlowski JA, Rizvi RK. WO 20062133, 2006 9 Gao D, Sand R, Fu H, Sharmin N, Gallin WJ, Hall DG. Bioorg. Med. Chem. Lett. 2013; 23: 5503 10 Carpenter W, Grant MS, Snyder HR. J. Am. Chem. Soc. 1960; 82: 2739; and references within 11 Wawzonek S, Hansen GR. J. Org. Chem. 1966; 31: 3580 12 Harris RL. N. Aust J Chem. 1970; 23: 1199 13 Kobayashi K, Kobayashi A, Ezaki K. Tetrahedron 2013; 69: 7936 14 Zhang H, Bao X, Song Y, Qu J, Wang B. Tetrahedron 2015; 71: 8885 15a Hamel P, Préville P. J. Org. Chem. 1996; 61: 1573 15b Hamel P. J. Org. Chem. 2002; 67: 2854 15c Plate R, Nivard RJ. F, Ottenheijm HC. J. Tetrahedron 1986; 42: 4503 16a Prasad CD, Kumar S, Sattar M, Adhikary A, Kumar S. Org. Biomol. Chem. 2013; 11: 8036 16b Silveira CC, Mendes SR, Wolf L, Martins GM, Mühlen LV. Tetrahedron 2012; 68: 10464 16c Hamel P, Zajac N, Atkinson JG, Girard Y. J. Org. Chem. 1994; 59: 6372 16d Hamel P, Girard Y, Atkinson JG. J. Org. Chem. 1992; 57: 2694 16e Anzai KJ. Heterocycl. Chem. 1979; 16: 567 17 Yang FL, Tian SK. Angew. Chem. Int. Ed. 2013; 18: 4929 18 Halimehjani AZ, Shokrgozar S, Beier P. J. Org. Chem. 2018; 83: 5778 19a Konstantinova LS, Rakitin OA, Rees CW. Chem. Commun. 2002; 11: 1204 19b Amelichev SA, Konstantinova LS, Lyssenko KA, Rakitin OA, Rees CW. Org. Biomol. Chem. 2005; 19: 3496 19c Amelichev SA, Aysin RR, Konstantinova LS, Obruchnikova NV, Rakitin OA, Rees CW. Org Lett. 2005; 25: 5725 19d Konstantinova LS, Amelichev SA, Rakitin OA. Russ. Chem. Bull. 2006; 55: 2081 19e Janosik T, Bergman J, Stensland B, Stalhandsked C. J. Chem. Soc., Perkin Trans. 1. 2002; 330 19f Bergman J, Sthandske C. Tetrahedron Lett. 1994; 5279 19g Konstantinova LS, Amelichev SA, Rakitin OA. Russ. Chem. Rev. 2007; 76: 195 20 Jardine RV, Brown RK. Can. J. Chem. 1965; 43: 1293 21 Kobayashi G, Furukawa S, Matsuda Y, Natsuki R. Yakugaku Zasshi 1970; 90: 132 22 Rewcastle GW, Denny WA. Heterocycles 1994; 37: 701 23a Konstantinova LS, Rakitin OA, Rees CW, Amelichev SA. Mendeleev Commun. 2004; 91 23b Konstantinova LS, Rakitin OA. Mendeleev Commun. 2009; 55 24 Konstantinova LS, Lysov KA, Amelichev SA, Obruchnikova NV, Rakitin OA. Tetrahedron 2009; 65: 2178 25 CCDC 1517984–1517999 contain the supplementary crystallographic data for 14a,b,e–m and 14o–s. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures 26 Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; Recent Ullman Coupling review: 10: 3525 27 Cremlyn RJ. An Introduction to Organosulfur Chemistry. John Wiley and Sons; Chichester: 1996 28 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision E.01,. Gaussian, Inc; Wallingford, CT: 2009 29 Schmitt J, Lespagnol A. Bull. Soc. Chim. Fr. 1950; 459 30 General ProceduresMethod A2-Methylindole (1.31 g, 10.0 mmol) in dry DMF (15 mL) was treated with powdered KOH (0.67 g, 12.0 mmol) and the mixture stirred for 30 min, where upon 3-(bromomethyl)benzonitrile (1.99 g, 10.0 mmol) was added in one portion. The reaction became exothermic and was cooled in an ice bath and after stirring for 96 h at r.t., the mixture was concentrated under vacuum and the residue taken up in EtOAc. The solution was washed with water, brine, dried (MgSO4), and concentrated to dryness in vacuo. Purification via flash column chromatography on silica gel (hexanes/EtOAc, 1:1) to afford 3-[(2-methyl-1H-indol-1-yl)methyl]benzonitrile (12k, 1.95 g, 7.4 mmol, 74% yield) as colorless crystals; mp 120–121 °C. HMRS: m/z calcd for C17H14N2 [M + H]+: 247.1235; found 247.1231. IR (film): νmax = 3019 m (C–H), 2945 m (C–H), 2915 m (C–H), 2224 s (C≡N), 1552 m (C=C), 1457 m, 1426 w, 1395 w, 1136 w, 783 m 744 s, 686 m cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.60–7.57 (1 H, m, CHAr), 7.54 (1 H, d, J = 8.1 Hz, CHAr), 7.38 (1 H, t, J = 7.8 Hz, CHAr), 7.28 (1 H, s, CHAr), 7.17 (1 H, dq, J = 1.0, 8.1 Hz, CHAr), 7.14–7.11 (3 H, m, CHAr), 6.38 (1 H, s, CHAr), 5.43 (2 H, s, CH2), 2.37 (3 H, s, CH3). 13C NMR (100 MHz, CDCl3): δ = 139.6 (CAr), 136.9 (CAr), 136.1 (CAr), 131.2 (CHAr), 130.4 (CHAr), 129.7 (CHAr), 129.5 (CHAr), 128.3 (CAr), 121.2 (CHAr), 120.1 (CHAr), 120.0 (CHAr), 118.5 (CAr), 113.1 (C≡N), 108.8 (CHAr), 101.3 (CHAr), 45.7 (CH2), 12.7 (CH3).Method BSodium hydride (0.5 g of a 60% dispersion in mineral oil, 12.5 mmol) was added portionwise to a solution of 2-methylindole (1.31 g, 10.0 mmol) in dry THF (20 mL). The mixture was stirred for 30 min, and then 2-(bromomethyl)benzonitrile (1.96 g, 10.0 mmol) was added in one portion, in addition to NaI (1.50 g, 10.0 mmol). The reaction became exothermic and was cooled in an ice bath and after stirring for 48 h at r.t., it was concentrated in vacuo and the residue taken up in EtOAc. The solution was washed with water, brine, dried (MgSO4), and concentrated to dryness in vacuo. Purification via flash column chromatography on silica gel (hexanes/EtOAc, 1:1) to afford 2-[(2-methyl-1H-indol-1-yl)methyl]benzonitrile (12j, 1.28 g, 5.2 mmol, 52% yield) as colorless crystals; mp 124–125 °C. HMRS: m/z calcd for C17H15N2 [M + H]+: 247.1235; found: 247.1233. IR (film): νmax = 3055 m (C–H), 2920 m (C–H), 2851 m (C–H), 2220 s (C≡N), 1460 m (C=C), 1396 w, 747 s, 703 s cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.74 (1 H, dd, J = 1.2, 7.0 Hz, CHAr), 7.62–7.59 (1 H, m, CHAr), 7.40–7.34 (2 H, m, CHAr), 7.16–7.12 (3 H, m, CHAr), 6.52 (1 H, d, J = 6.3, CHAr), 6.41 (1 H, s, CHAr), 5.55 (2 H, s, CH2), 2.39 (3 H, s, CH3). 13C NMR (100 MHz, CDCl3): δ = 141.7 (CAr), 137.0 (CAr), 136.4 (CAr), 133.5 (CHAr), 132.9 (CHAr), 128.3 (CAr), 127.8 (CHAr), 126.5 (CHAr), 121.2 (CHAr), 120.0 (CHAr), 117.1 (CAr), 110.1 (C≡N), 108.9 (CHAr), 101.2 (CHAr), 44.7(CH2), 12.6 (CH3).Method CDisulfur dichloride (0.4 mL, 5 mmol) was added dropwise at –35 °C to a stirred solution of DABCO (1.12 g, 10 mmol) in chloroform (25 mL) under nitrogen. The mixture was stirred at r.t. for 1 h. 3-[(2-Methyl-1H-indol-1-yl)methyl]benzonitrile (12j, 0.239 g, 1 mmol) in chloroform (5 mL) was added, and the mixture was stirred at r.t. for 48 h under nitrogen. Triethylamine (1.4 mL, 10 mmol) was then added to the resultant mixture at 0 °C, the mixture stirred at r.t. for 2 h, heated at reflux for 3 h, filtered, and solvents evaporated. Purification via flash column chromatography on silica gel (hexanes/CH2Cl2) to afford 3-{(3-thioxo-[1,2]dithiolo[4,3-b]indol-4(3H)-yl)methyl}benzonitrile (14l) (0.277 g, 0.82 mmol, 82% yield) as orange crystals; mp 190–191 °C. HMRS: m/z calcd for C17H11N2S3 [M + H]+: 339.0079; found: 339.0077. IR (film): νmax = 3054 m (C–H), 2952 m (C–H), 2921 m (C–H), 2872 w (C–H), 2851 w (C–H), 2226 s (C≡N), 1472 s (C=C), 1330 s, 1258 w, 1122 w, 1060 s, 685 m cm–1. (400 MHz, CDCl3): δ = 7.77 (1 H, dt, J = 1.0, 8.0 Hz, CHAr), 7.46 (2 H, ddd, J = 1.0, 4.8, 5.9 Hz, CHAr), 7.40–7.32 (3 H, m, CHAr), 7.24–7.19 (2 H, m, CHAr), 6.15 (2 H, s, CHAr). 13C NMR (100 MHz, CDCl3): δ = 195.9 (C=S), 146.9 (CAr), 142.2 (CAr), 149.4 (CAr), 139.0 (CAr), 131.4 (CHAr), 131.3 (CAr), 130.3 (CHAr), 129.6 (CHAr), 125.5 (CAr), 121.9 (CHAr), 121.7 (CHAr), 120.6 (CHAr), 114.3 (CHAr),113.0 (C≡N), 111.8 (CHAr), 44.0 (CH2).