Synlett 2019; 30(02): 167-172
DOI: 10.1055/s-0037-1611940
letter
© Georg Thieme Verlag Stuttgart · New York

Catalyst-Free Synthesis of Aminals from Indole-Derived α,α-Di­cyanoolefins

a   Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, P. R. of China   Email: cuihailei616@163.com
,
Yin Shi
a   Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, P. R. of China   Email: cuihailei616@163.com
,
Hui-Qing Deng
a   Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, P. R. of China   Email: cuihailei616@163.com
,
Jin-Ju Lei
a   Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, P. R. of China   Email: cuihailei616@163.com
,
Xing-Jie Xu
a   Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, P. R. of China   Email: cuihailei616@163.com
b   Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. of China
,
Xu Tian
b   Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. of China
,
Jie Qiao
a   Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, P. R. of China   Email: cuihailei616@163.com
,
Lin Zhou
a   Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, P. R. of China   Email: cuihailei616@163.com
› Author Affiliations
We are grateful for the support provided for this study by the National Natural Science Foundation of China (21502013, 21871035) and Chongqing University of Arts and Sciences (R2015BX01).
Further Information

Publication History

Received: 14 October 2018

Accepted after revision: 26 November 2018

Publication Date:
19 December 2018 (online)


Abstract

We have developed an efficient synthesis of indole fused aminals with nucleophilic imines and indole-derived α,α-dicyanoolefins via N-sulfonyl group transfer. The combination of two privileged frameworks, tetrahydroisoquinoline or tetrahydro-β-carboline and indole, can be realized by this approach to the construction of aminals. The synthetic application of this method was further demonstrated by the straightforward transformations into highly functionalized aminals possessing carbonyl groups through oxidative cleavage of the nitrile moiety.

Supporting Information

 
  • References and Notes

    • 2a Fan H, Peng J, Hamann MT, Hu J.-F. Chem. Rev. 2008; 108: 264
    • 2b Chrzanowska M, Rozwadowska MD. Chem. Rev. 2004; 104: 3341
    • 2c Liu W, Liu S, Jin R, Guo H, Zhao J. Org. Chem. Front. 2015; 2: 288
    • 2d Welsch ME, Snyder SA, Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 347
    • 2e Scott JD, Williams RM. Chem. Rev. 2002; 102: 1669
    • 3a Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
    • 3b Oh S, Park SB. Chem. Commun. 2011; 12754
    • 4a Cui H.-L, Wang J.-F, Zhou H.-L, You X.-L, Jiang X.-J. Org. Biomol. Chem. 2017; 15: 3860
    • 4b Tang X, Yang M.-C, Ye C, Liu L, Zhou H.-L, Jiang X.-J, You X.-L, Han B, Cui H.-L. Org. Chem. Front. 2017; 4: 2128
    • 4c Yang M.-C, Tang X, Liu S.-W, Deng H.-Q, Lei J.-J, Gao Y.-J, Han B, Cui H.-L. Tetrahedron Lett. 2018; 59: 138
    • 4d Zhang X.-Y, Hu L.-L, Shen Z, Chen Z.-Z, Xu Z.-G, Li S.-Q, Xie J.-W, Cui H.-L. Synlett 2015; 26: 2821
    • 4e Tang X, Gao Y.-J, Deng H.-Q, Lei J.-J, Liu S.-W, Zhou L, Shi Y, Liang H, Qiao J, Guo L, Han B, Cui H.-L. Org. Biomol. Chem. 2018; 16: 3362

      For reviews, see:
    • 5a Pinho e Melo TM. V. D. Eur. J. Org. Chem. 2006; 2873
    • 5b Seidel D. Acc. Chem. Res. 2015; 48: 317
    • 5c Xu X, Doyle MP. Acc. Chem. Res. 2014; 47: 1396
    • 5d Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
    • 5e De N, Yoo EJ. ACS Catal. 2018; 8: 48
    • 5f Anaç O, Güngör F. Ş. Tetrahedron 2010; 66: 5931
    • 5g Nyerges M, Tóth J, Groundwater PW. Synlett 2008; 1269
    • 5h Nedolya NA, Trofimov BA. Chem. Heterocycl. Comp. 2013; 49: 152

      For recent examples on the synthesis of azacycles through electrocyclization, see:
    • 6a Kang Y, Richers MT, Sawicki CH, Seidel D. Chem. Commun. 2015; 10648
    • 6b Ma L, Seidel D. Chem. Eur. J. 2015; 21: 12908
    • 6c Xiang J, Xie H, Li Z, Dang Q, Bai X. Org. Lett. 2015; 17: 3818
    • 6d Sun J, Sun Y, Gong H, Xie Y.-J, Yan C.-G. Org. Lett. 2012; 14: 5172
    • 6e Lee DJ, Han HS, Shin J, Yoo EJ. J. Am. Chem. Soc. 2014; 136: 11606
    • 6f Yadav AK, Yadav LD. S. Tetrahedron Lett. 2015; 56: 686
    • 6g Basavaiah D, Lingaiah B, Reddy GC, Sahu BC. Eur. J. Org. Chem. 2016; 2398
  • 7 Cui H.-L, Peng L.-J, Zhou H.-L, You X.-L, Jiang X.-J. Org. Biomol. Chem. 2017; 15: 5121
    • 8a Randriambola L, Quirion J.-C. Tetrahedron Lett. 1987; 28: 2123
    • 8b Yang X.-W, Yang C.-P, Jiang L.-P, Qin X.-J, Liu Y.-P, Shen Q.-S, Chen Y.-B, Luo X.-D. Org. Lett. 2014; 16: 5808
    • 8c Raoul M, Schaeffer C, Léonce S, Pierré A, Atassi G, Hocquemiller R, Lewin G. Bioorg. Med. Chem. Lett. 2001; 11: 79
    • 8d Zhu J, Zhou L, Wu G, Konig H, Lin X, Li G, Qiu X.-L, Chen C.-F, Hu C.-M, Goldblatt E, Bhatia R, Chamberlin AR, Chen P.-L, Lee W.-H. EMBO Mol. Med. 2013; 5: 353
    • 9a Xie Y, Zhao Y, Qian B, Yang L, Xia C, Huang H. Angew. Chem. Int. Ed. 2011; 50: 5682
    • 9b Trost B.-M, Gnanamani E, Hung C.-I. Angew. Chem. Int. Ed. 2017; 56: 10451
    • 9c Sun X.-X, Li C, He Y.-Y, Zhu Z.-Q, Mei G.-J, Shi F. Adv. Synth. Catal. 2017; 359: 2660
    • 9d Zhang M, Yu C, Xie J, Xun X, Sun W, Hong L, Wang R. Angew. Chem. Int. Ed. 2018; 57: 4925
    • 9e Nassiri M, Heydari R, Hazeri N, Habibi-Khorassani SM, Maghsoodlou MT, Milani FJ. ARKIVOC 2010; : 61
    • 9f Liang Y, Rowland EB, Rowland GB, Perman JA, Antilla JC. Chem. Commun. 2007; 4477
    • 9g Patil NT, Konala A, Sravanti A, Singh A, Ummanni R, Sridhar B. Chem. Commun. 2013; 10109
    • 9h Das T, Kayet A, Mishra R, Singh VK. Chem. Commun. 2016; 11231
    • 9i George N, Bekkaye M, Alix A, Zhu J, Masson G. Chem. Eur. J. 2014; 20: 3621
    • 9j Jiang L, Yu Y, Li G, Zu L. Chem. Asian J. 2016; 11: 2838
    • 9k Blay G, Girón RM, Montesinos-Magraner M, Pedro JR. Eur. J. Org. Chem. 2013; 2885
    • 9l Burger U, Bringhen AO, Wirthner PJ, Schärer J.-C. Helv. Chim. Acta 1985; 68: 2275
    • 9m Rowland GB, Zhang H, Rowland EB, Chennamadhavuni S, Wang Y, Antilla JC. J. Am. Chem. Soc. 2005; 127: 15696
    • 9n Gürtler CF, Steckhan E, Blechert S. J. Org. Chem. 1996; 61: 4136
    • 9o Beccalli EM, Bernasconi A, Broggini G, Rigamonti M, Zecchi G. J. Org. Chem. 2010; 75: 6923
    • 9p Guo S, Tao L, Zhang W, Zhang X, Fan X. J. Org. Chem. 2015; 80: 10955
    • 9q Martinez-Ariza G, Ayaz M, Hulme C. Tetrahedron Lett. 2013; 54: 6917
    • 9r Alves MJ, Fortes AG, Gonçalves LF. Tetrahedron Lett. 2003; 44: 6277
    • 9s Alves MJ, Ferreira PM. T, Maia HL. S, Monteiro LS, Gilchrist TL. Tetrahedron Lett. 2000; 41: 4991
    • 9t Armstrong RJ, D’Ascenzio M, Smith MD. Synlett 2016; 27: 6
    • 9u Love BE, Nguyen BT. Synlett 1998; 1123
    • 9v Jida M, Poorten OV. d, Guillemyn K, Urbanczyk-Lipkowska Z, Tourwé D, Ballet S. Org. Lett. 2015; 17: 4482
    • 9w Bera K, Schneider C. Org. Lett. 2016; 18: 5660
    • 9x Ortiz GX, Hemric BN, Wang Q. Org. Lett. 2017; 19: 1314

      For selected examples on the synthesis of natural products possessing indole-fused aminal moiety, see:
    • 10a Simone FD, Gertsch J, Waser J. Angew. Chem. Int. Ed. 2010; 49: 5767
    • 10b Xu Z, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2013; 52: 3272
    • 10c Pritchett BP, Kikuchi J, Numajiri Y, Stoltz BM. Angew. Chem. Int. Ed. 2016; 55: 13529
    • 10d Bihelovic F, Ferjancic Z. Angew. Chem. Int. Ed. 2016; 55: 2569
    • 10e Mason JD, Weinreb SM. Angew. Chem. Int. Ed. 2017; 56: 16674
    • 10f Zhou B, Du J, Yang Y, Li Y. Chem. Eur. J. 2014; 20: 12768
    • 10g Wagnières O, Xu Z, Wang Q, Zhu J. J. Am. Chem. Soc. 2014; 136: 15102
    • 10h Liang X, Jiang S.-Z, Wei K, Yang Y.-R. J. Am. Chem. Soc. 2016; 138: 2560
    • 10i Takano S, Sato T, Inomata K, Ogasawara K. J. Chem. Soc., Chem. Commun. 1991; 462
    • 10j Morales CL, Pagenkopf BL. Org. Lett. 2008; 10: 157
    • 10k Mizutani M, Inagaki F, Nakanishi T, Yanagihara C, Tamai I, Mukai C. Org. Lett. 2011; 13: 1796
    • 10l Zhou Y, Zhou S. Org. Lett. 2014; 16: 3416
    • 10m Lewin G, Bernadat G, Aubert G, Cresteil T. Tetrahedron 2013; 69: 1622
    • 10n Hewlett NM, Tepe JJ. Org. Lett. 2011; 13: 4550
    • 10o Pan Z.-Q, Qin X.-J, Liu Y.-P, Wu T, Luo X.-D, Xia C.-F. Org. Lett. 2016; 18: 654

      For recent examples on the combination of indole and tetrahydroisoquinoline, see:
    • 11a Yu L, Zhong Y, Yu J, Gan L, Cai Z, Wang R, Jiang X. Chem. Commun. 2018; 2353
    • 11b Liu Y, Wang C, Xue D, Xiao M, Li C, Xiao J. Chem. Eur. J. 2017; 23: 3051
  • 12 CCDC 1871844 for compound 3e. See the Supporting Information for details.
    • 13a Alemán J, Jacobsen CB, Frisch K, Overgaard J, Jørgensen KA. Chem. Commun. 2008; 632
    • 13b Cheng C, Lu X, Ge L, Chen J, Cao W, Wu X, Zhao G. Org. Chem. Front. 2017; 4: 101
  • 14 Synthesis of Compound 3; General Procedure: A mixture of 3,4-dihydro-isoquinoline imine 1 (0.3 mmol), 2-((1-sulfonyl-1H-indol-3-yl)methylene)malononitrile 2 (0.1 mmol), 4 Å molecular sieves (100 mg) and DMF (0.5 mL) was stirred at 50 °C. Upon the consumption of 2 (monitored by TLC), the reaction was diluted with CH2Cl2 (3 mL) and washed with water (3 mL) and brine (3 mL). The organic layer was concentrated and purified by a silica gel flash chromatography (PE/EtOAc) to afford compound 3. Spectral Data for Selected Compounds Compound 3a: Purified by flash column chromatography (PE/EtOAc, 4:1); Yield: 43.3 mg (77%); yellow solid. 1H NMR (400 MHz, CDCl3): δ = 8.03 (d, J = 8.3 Hz, 1 H), 7.97 (s, 1 H), 7.93 (s, 1 H), 7.69 (d, J = 7.8 Hz, 1 H), 7.50–7.44 (m, 2 H), 7.41 (t, J = 7.2 Hz, 1 H), 7.34 (d, J = 8.3 Hz, 2 H), 7.02 (d, J = 8.0 Hz, 2 H), 6.60 (s, 1 H), 6.40 (s, 1 H), 3.99 (dd, J = 14.3, 5.1 Hz, 1 H), 3.87 (s, 3 H), 3.67 (s, 3 H), 3.36 (ddd, J = 14.4, 11.8, 5.1 Hz, 1 H), 2.84–2.68 (m, 2 H), 2.32 (s, 3 H); 13C{1H} NMR (100 MHz, CDCl3): δ = 150.3, 149.8, 148.8, 144.0, 136.6, 136.3, 132.6, 129.5, 127.3, 127.0, 126.7, 125.2, 123.8, 120.9, 118.1, 114.9, 112.4, 111.3, 111.2, 109.5, 77.4, 65.5, 56.1, 56.0, 39.4, 26.4, 21.5; HRMS (ESI): m/z [M+H]+ calcd. for C30H27N4O4S+: 539.1748; found: 539.1743. Compound 3b: Purified by flash column chromatography (PE/EtOAc, 4:1); Yield: 28.1 mg (50%); yellow solid. 1H NMR (400 MHz, CDCl3): δ = 7.93 (s, 1 H), 7.90 (s, 1 H), 7.88 (d, J = 8.4 Hz, 1 H), 7.47 (s, 1 H), 7.41 (s, 1 H), 7.34 (d, J = 8.2 Hz, 2 H), 7.29 (s, 1 H), 7.03 (d, J = 8.1 Hz, 2 H), 6.59 (s, 1 H), 6.40 (s, 1 H), 3.98 (dd, J = 14.2, 5.1 Hz, 1 H), 3.87 (s, 3 H), 3.67 (s, 3 H), 3.35 (ddd, J = 14.4, 11.8, 5.0 Hz, 1 H), 2.85–2.67 (m, 2 H), 2.53 (s, 3 H), 2.33 (s, 3 H); 13C{1H} NMR (100 MHz, CDCl3): δ = 150.2, 149.9, 148.7, 143.9, 136.3, 135.0, 133.7, 132.5, 129.5, 127.6, 127.0, 126.9, 126.8, 126.7, 121.0, 117.8, 115.0, 112.1, 111.2, 110.9, 109.5, 73.4, 65.5, 56.1, 56.0, 39.4, 26.5, 21.6, 21.5; HRMS (ESI): m/z [M+H]+ calcd. for C31H29N4O4S+: 553.1904; found: 553.1899. Compound 3c: Purified by flash column chromatography (PE/EtOAc, 4:1); Yield: 35.7 mg (63%); yellow solid. 1H NMR (400 MHz, CDCl3): δ = 7.90–7.87 (m, 3 H), 7.38–7.35 (m, 3 H), 7.11–7.04 (m, 4 H), 6.59 (s, 1 H), 6.41 (s, 1 H), 3.97 (dd, J = 14.5, 5.0 Hz, 1 H), 3.92 (s, 3 H), 3.87 (s, 3 H), 3.69 (s, 3 H), 3.33 (ddd, J = 14.4, 11.8, 5.0 Hz, 1 H), 2.78–2.33 (m, 2 H), 2.33 (s, 3 H); 13C{1H} NMR (100 MHz, CDCl3): δ = 157.1, 150.3, 149.8, 148.8, 144.0, 136.4, 132.9, 131.5, 129.5, 128.4, 127.0, 126.8, 120.9, 115.1, 115.0, 114.8, 113.4, 111.3, 111.0, 109.6, 100.2, 73.1, 65.7, 56.1, 56.0, 55.9, 39.4, 26.4, 21.5; HRMS (ESI): m/z [M+Na]+ calcd. for C31H28N4NaO5S+: 591.1673; found: 591.1669. Compound 3e: Purified by flash column chromatography (PE/EtOAc, 4:1); Yield: 34.6 mg (63%); yellow solid. 1H NMR (400 MHz, CDCl3): δ = 7.88 (d, J = 4.8 Hz, 2 H), 7.82 (s, 1 H), 7.56 (d, J = 8.2 Hz, 1 H), 7.41 (s, 1 H), 7.34 (d, J = 8.2 Hz, 2 H), 7.23 (d, J = 8.2 Hz, 1 H), 7.02 (d, J = 8.1 Hz, 2 H), 6.60 (s, 1 H), 6.39 (s, 1 H), 4.01 (dd, J = 14.4, 5.7 Hz, 1 H), 3.87 (s, 3 H), 3.67 (s, 3 H), 3.39–3.36 (m, 1 H), 2.90–2.65 (m, 2 H), 2.56 (s, 3 H), 2.32 (s, 3 H); 13C{1H} NMR (100 MHz, CDCl3): δ = 150.2, 150.0, 148.7, 148.7, 143.9, 137.1, 136.4, 136.4, 135.4, 132.1, 129.5, 126.7, 125.5, 125.0, 121.1, 117.7, 115.0, 112.2, 111.2, 109.5, 73.6, 65.3, 56.1, 56.0, 39.5, 26.5, 22.7, 21.5; HRMS (ESI): m/z [M+Na]+ calcd. for C31H28N4NaO4S+: 575.1724; found: 575.1723. Compound 3f: Purified by flash column chromatography (PE/EtOAc, 4:1); Yield: 27.5 mg (48%); yellow solid. 1H NMR (400 MHz, CDCl3): δ = 8.01–7.95 (m, 2 H), 7.87 (s, 1 H), 7.59 (d, J = 8.5 Hz, 1 H), 7.40 (d, J = 8.3 Hz, 2 H), 7.38–7.33 (m, 2 H), 7.06 (d, J = 8.1 Hz, 2 H), 6.60 (s, 1 H), 6.38 (s, 1 H), 4.01 (dd, J = 14.4, 5.3 Hz, 1 H), 3.87 (s, 3 H), 3.69 (s, 3 H), 3.40–3.29 (m, 1 H), 2.85–2.67 (m, 2 H), 2.32 (s, 3 H); 13C{1H} NMR (100 MHz, CDCl3): δ = 150.4, 149.5, 148.8, 144.1, 136.9, 136.3, 133.0, 131.2, 129.6, 127.1, 126.7, 125.7, 124.4, 120.5, 119.0, 114.6, 112.6, 111.3, 110.9, 109.5, 100.0, 75.2, 65.7, 56.2, 56.0, 39.5, 26.4, 21.5; HRMS (ESI): m/z [M+H2O+H]+ calcd. for C30H28ClN4O5S+: 591.1463; found: 591.1467. Compound 3g: Purified by flash column chromatography (PE/EtOAc, 4:1); Yield: 30.7 mg (61%); yellow solid. 1H NMR (400 MHz, CDCl3): δ = 7.97 (d, J = 8.4 Hz, 1 H), 7.94 (s, 1 H), 7.90 (s, 1 H), 7.67 (d, J = 8.0 Hz, 1 H), 7.48–7.44 (m, 2 H), 7.39 (t, J = 7.6 Hz, 1 H), 7.28 (d, J = 8.0 Hz, 2 H), 6.99 (d, J = 8.0 Hz, 2 H), 6.89 (d, J = 8.4 Hz, 1 H), 6.74 (dd, J = 8.8, 2.4 Hz, 1 H), 6.68 (d, J = 2.0 Hz, 1 H), 4.06 (dd, J = 14.1, 4.6 Hz, 1 H), 3.79 (s, 3 H), 3.39 (ddd, J = 14.1, 11.8, 4.7 Hz, 1 H), 2.97–2.78 (m, 2 H), 2.31 (s, 3 H); 13C{1H} NMR (100 MHz, CDCl3): δ = 160.2, 149.7, 143.9, 136.7, 136.3, 135.7, 132.4, 129.5, 128.9, 127.2, 126.6, 125.1, 123.7, 121.8, 118.0, 114.9, 114.4, 113.5, 112.3, 111.2, 73.8, 65.4, 55.4, 39.7, 27.7, 21.4; HRMS (ESI): m/z [M+Na]+ calcd. for C29H24N4NaO3S+: 531.1461; found: 531.1458. Compound 3i: Purified by flash column chromatography (PE/EtOAc, 4:1); Yield: 28.0 mg (53%); yellow solid. 1H NMR (400 MHz, CDCl3): δ = 8.03 (d, J = 8.0 Hz, 1 H), 7.98 (s, 1 H), 7.92 (s, 1 H), 7.68 (d, J = 8.0 Hz, 1 H), 7.47–7.40 (m, 4 H), 7.42–7.40 (m, 2 H), 7.22 (t, J = 7.6 Hz, 2 H), 6.59 (s, 1 H), 6.40 (s, 1 H), 4.08–3.98 (m, 1 H), 3.87 (s, 3 H), 3.67 (s, 3 H), 3.43–3.33 (m, 1 H), 2.79–2.78 (m, 2 H); 13C{1H} NMR (100 MHz, CDCl3): δ = 150.3, 149.9, 148.8, 139.3, 136.6, 132.9, 132.5, 128.9, 127.3, 126.9, 126.6, 125.2, 123.8, 120.9, 118.1, 114.9, 114.8, 112.4, 111.3, 111.2, 109.5, 74.2, 65.5, 56.1, 56.0, 39.5, 26.5; HRMS (ESI): m/z [M+Na]+ calcd. for C29H24N4NaO4S+: 547.1410; found: 547.1411. Compound 3j: Purified by flash column chromatography (PE/EtOAc, 4:1); Yield: 32.9 mg (59%); yellow solid. 1H NMR (400 MHz, CDCl3): δ = 8.02 (d, J = 8.4 Hz, 1 H), 7.85 (s, 1 H), 7.81 (d, J = 8.4 Hz, 1 H), 7.71 (d, J = 8.8 Hz, 1 H), 7.66–7.61 (m, 2 H), 7.57–7.43 (m, 7 H), 7.40 (t, J = 7.2 Hz, 1 H), 6.58 (s, 1 H), 6.36 (s, 1 H), 4.25 (dd, J = 13.7, 4.8 Hz, 1 H), 3.83 (s, 3 H), 3.62 (s, 3 H), 3.46 (td, J = 13.6, 4.2 Hz, 1 H), 2.98–2.77 (m, 2 H); 13C{1H} NMR (100 MHz, CDCl3): δ = 150.2, 149.1, 148.8, 136.8, 135.9, 134.6, 131.7, 131.7, 129.3, 129.2, 129.1, 127.9, 127.7, 127.4, 127.0, 126.9, 125.3, 123.7, 121.4, 121.4, 118.1, 114.8, 114.7, 112.0, 111.2, 109.3, 73.8, 65.3, 56.1, 56.0, 40.4, 27.5; HRMS (ESI): m/z [M+Na]+ calcd. for C33H26N4NaO4S+: 597.1567; found: 597.1561. Compound 3k: Purified by flash column chromatography (PE/EtOAc, 4:1); Yield: 35.4 mg (64%); yellow solid. 1H NMR (400 MHz, CDCl3): δ = 7.99–7.97 (m, 2 H), 7.93 (s, 1 H), 7.69 (d, J = 8.0 Hz, 1 H), 7.48 (t, J = 7.6 Hz, 1 H), 7.43–7.40 (m, 2 H), 7.34 (d, J = 8.4 Hz, 2 H), 7.16 (d, J = 8.4 Hz, 2 H), 6.62 (s, 1 H), 6.39 (s, 1 H), 4.05 (dd, J = 13.2, 5.2 Hz, 1 H), 3.89 (s, 3 H), 3.66 (s, 3 H), 3.44–3.36 (m, 1 H), 2.85–2.80 (m, 2 H); 13C{1H} NMR (100 MHz, CDCl3): δ = 150.4, 149.7, 148.9, 139.6, 137.7, 136.6, 132.1, 129.1, 128.0, 127.2, 126.7, 125.3, 123.9, 120.8, 118.2, 114.9, 114.7, 112.1, 111.3, 111.2, 109.5, 65.4, 56.1, 56.0, 39.8, 29.7, 26.7; HRMS (ESI): m/z [M+Na]+ calcd. for C29H23ClN4NaO4S+: 581.1021; found: 581.1023. Compound 3l: Purified by flash column chromatography (PE/EtOAc, 4:1); Yield: 14.6 mg (25%); yellow solid. 1H NMR (400 MHz, CDCl3): δ = 8.12 (s, 1 H), 8.01–7.99 (m, 2 H), 7.75 (d, J = 7.6 Hz, 1 H), 7.47 (t, J = 7.6 Hz, 1 H), 7.42 (t, J = 7.6 Hz, 1 H), 7.36 (s, 1 H), 6.77 (s, 1 H), 6.42 (s, 1 H), 3.99 (dd, J = 14.0, 6.0 Hz, 1 H), 3.93 (s, 3 H), 3.69 (s, 3 H), 3.40 (td, J = 12.4, 4.4 Hz, 1 H), 3.25–3.16 (m, 1 H), 2.93 (dd, J = 12.8, 3.6 Hz, 1 H), 2.62 (s, 3 H); 13C{1H} NMR (100 MHz, CDCl3): δ = 150.5, 150.0, 148.9, 136.4, 132.8, 127.5, 127.0, 125.3, 124.0, 120.6, 118.4, 114.9, 114.7, 112.3, 111.5, 111.2, 109.8, 74.9, 65.3, 56.1, 56.1, 40.2, 38.9, 27.1; HRMS (ESI): m/z [M+Na]+ calcd. for C24H22N4NaO4S+: 485.1254; found: 485.1249. Compound 3m: Purified by flash column chromatography (PE/EtOAc, 4:1); Yield: 20.0 mg (42%); yellow solid. 1H NMR (400 MHz, CDCl3): δ = 8.17 (s, 1 H), 8.02 (s, 1 H), 7.96 (d, J = 8.4 Hz, 1 H), 7.75 (d, J = 8.0 Hz, 1 H), 7.46 (t, J = 7.6 Hz, 1 H), 7.41 (t, J = 7.6 Hz, 1 H), 7.37 (s, 1 H), 6.76 (s, 1 H), 6.39 (s, 1 H), 3.98 (dd, J = 14.0, 6.0 Hz, 1 H), 3.93 (s, 3 H), 3.68 (s, 3 H), 3.47–3.40 (m, 1 H), 3.23–3.14 (m, 1 H), 2.92 (dd, J = 16.4, 2.8 Hz, 1 H), 2.72–2.55 (m, 2 H), 1.75–1.56 (m, 2 H), 0.82 (t, J = 7.2 Hz, 3 H); 13C{1H} NMR (100 MHz, CDCl3): δ = 150.4, 150.0, 148.9, 136.4, 132.8, 127.4, 127.1, 125.1, 123.9, 120.9, 118.4, 114.9, 114.8, 112.3, 111.4, 111.2, 109.7, 74.8, 65.1, 56.1, 56.0, 55.2, 39.4, 27.5, 16.9, 12.9; HRMS (ESI): m/z [M+Na]+ calcd. for C26H26N4NaO4S+: 513.1567; found: 513.1563. Compound 3n: Purified by flash column chromatography (PE/EtOAc, 4:1); Yield: 32.0 mg (66%); yellow solid. 1H NMR (400 MHz, CDCl3): δ = 7.95 (s, 1 H), 7.85 (s, 1 H), 7.72 (s, 1 H), 7.58 (d, J = 4.8 Hz, 1 H), 7.56 (d, J = 4.4 Hz, 1 H), 7.50–7.42 (m, 2 H), 7.41–7.29 (m, 3 H), 7.24 (s, 1 H), 7.23–7.18 (m, 2 H), 7.13 (t, J = 7.6 Hz, 1 H), 7.04 (t, J = 7.6 Hz, 2 H), 6.96 (d, J = 8.4 Hz, 2 H), 6.51 (d, J = 7.6 Hz, 2 H), 5.03 (d, J = 17.0 Hz, 1 H), 4.79 (d, J = 17.0 Hz, 1 H), 4.12 (dd, J = 14.7, 5.8 Hz, 1 H), 3.53–3.39 (m, 1 H), 2.91 (dd, J = 16.2, 4.1 Hz, 1 H), 2.73 (dd, J = 11.9, 5.6 Hz, 1 H), 2.26 (s, 3 H); 13C{1H} NMR (100 MHz, CDCl3): δ = 149.8, 144.0, 138.2, 136.4, 136.0, 135.8, 129.5, 128.6, 127.7, 126.7, 126.0, 125.7, 125.3, 125.2, 124.2, 123.8, 120.4, 119.6, 118.1, 113.1, 112.1, 111.3, 109.7, 74.4, 61.6, 46.9, 39.9, 21.4, 20.2; HRMS (ESI): m/z [M+Na]+ calcd. for C37H29N5NaO2S+: 630.1934; found: 630.1943.