Arthritis und Rheuma 2014; 34(06): 366-373
DOI: 10.1055/s-0037-1619453
Interdisziplinäre Kinderrheumatologie
Schattauer GmbH

Juvenile idiopathische Arthritis

Biomarker für die Diagnose mit Subklassifizierung, Prognose und TherapieprädiktionJuvenile idiopathic arthritisBiomarkers for the diagnosis of disease subtypes, prognosis and prediction of therapy
B. Stuhlmüller
1   Medizinische Klinik mit Schwerpunkt Rheumatologie und klinische Immunologie, Charité Universitätsmedizin Berlin, Freie Universität und Humboldt-Universität, Berlin
,
T. Häupl
1   Medizinische Klinik mit Schwerpunkt Rheumatologie und klinische Immunologie, Charité Universitätsmedizin Berlin, Freie Universität und Humboldt-Universität, Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Zusammenfassung

Die juvenile idiopathische Arthritis (JIA) ist eine heterogene Erkrankung, die bei Kindern und Jugendlichen auftritt und zur dauerhaften Beeinträchtigung mit großem Leidensdruck führen kann. Bisher ist über die Ätiologie und Pathogenese der JIA noch wenig bekannt und die Behandlung stellt sich schwierig dar, da sich die JIA erst im Verlauf in die verschiedenen Krankheitsformen einordnen lässt. Neben der oligoartikulären JIA gibt es Formen mit polyartikulärer Ausprägung oder systemischen Manifestationen bis hin zum Krankheitsbild mit Makrophagenaktivierungssyndrom. Dieser Artikel wird sich neben der systemischen JIA mit polygenem Erscheinungsbild auch mit den nichtsystemischen Formen der JIA mit monogenem Charakter beschäftigen und den aktuellen Kenntnisstand hinsichtlich Biomarker darstellen. Bei der JIA fehlen, genau wie bei der rheumatoiden Arthritis oder anderen Autoimmunerkrankungen, bis heute valide und kommerziell nutzbare Biomarker für die Diagnose mit schneller Subklassifizierung der Patienten, zur Prognose und Vorhersage des Ansprechens auf die Therapie, um die angestrebte patientenorientierte „individualisierte Medizin“ zu gewährleisten.

Summary

Juvenile idiopathic arthritis (JIA) is a heterogenous chronic rheumatic disease which affects children and adolescents. The etiology and pathogenesis of JIA are still unkown and the treatment is complex. In general, burden of the disease increases with the number of affected joints and with severe systemic inflammation. Beside oligoarticular and polyarticular JIA with monogenetic characteristics, the systemic autoinflammatory form of JIA (sJIA) is characterised by polygenetic involvements. Furthermore, in oligo- or polyarticular JIA regulatory and effector T-cell subsets are affected, whereas in sJIA cells of the myeloid system are involved. So far, not only in rheumatoid arthritis and other autoimmune diseases but also in JIA valuable biomarkers are rare and commercial tests are still missing to diagnose JIA subgroups, to allow prognosis of the disease, and to predict individual therapeutic response. Therefore, validated biomarkers are of need to enhance bench-to-bedside research and development in childhood arthritis.

 
  • Literatur

  • 1 Foeldvari I, Szer IS, Zemel L. et al. A prospective study comparing celecoxib with naproxen in children with juvenile rheumatoid arthritis. The Journal of rheumatology 2009; 36: 174-182.
  • 2 Silverman E, Mouy R, Spiegel L. et al. Leflunomide or methotrexate for juvenile rheumatoid arthritis. The New England journal of medicine 2005; 352: 1655-1666.
  • 3 Kvien TK, Hoyeraal HM, Sandstad B. Azathioprine versus placebo in patients with juvenile rheumatoid arthritis: a single center double blind comparative study. The Journal of rheumatology 1986; 13: 118-123.
  • 4 van Rossum MA, van Soesbergen RM, Boers M. et al. Long-term outcome of juvenile idiopathic arthritis following a placebo-controlled trial: sustained benefits of early sulfasalazine treatment. Annals of the rheumatic diseases 2007; 66: 1518-1524.
  • 5 Cespedes-Cruz A, Gutierrez-Suarez R, Pistorio A. et al. Methotrexate improves the health-related quality of life of children with juvenile idiopathic arthritis. Annals of the rheumatic diseases 2008; 67: 309-314.
  • 6 Foell D, Wulffraat N, Wedderburn L. et al. Methotrexate withdrawal at 6 vs 12 months in juvenile idiopathic arthritis in remission: a randomized clinical trial. Jama 2010; 303: 1266-1273.
  • 7 Lovell DJ, Giannini EH, Reiff A. et al. Etanercept in children with polyarticular juvenile rheumatoid arthritis. Pediatric Rheumatology Collaborative Study Group. The New England journal of medicine 2000; 342: 763-769.
  • 8 Lovell DJ, Reiff A, Jones OY. et al. Long-term safety and efficacy of etanercept in children with polyarticular-course juvenile rheumatoid arthritis. Arthritis and rheumatism 2006; 54: 1987-1994.
  • 9 Lovell DJ, Ruperto N, Goodman S. et al. Adalimumab with or without methotrexate in juvenile rheumatoid arthritis. The New England journal of medicine 2008; 359: 810-820.
  • 10 Ruperto N, Lovell DJ, Cuttica R. et al. A randomized, placebo-controlled trial of infliximab plus methotrexate for the treatment of polyarticular-course juvenile rheumatoid arthritis. Arthritis and rheumatism 2007; 56: 3096-3106.
  • 11 Lequerre T, Quartier P, Rosellini D. et al. Interleukin-1 receptor antagonist (anakinra) treatment in patients with systemic-onset juvenile idiopathic arthritis or adult onset Still disease: preliminary experience in France. Annals of the rheumatic diseases 2008; 67: 302-308.
  • 12 Ruperto N, Lovell DJ, Quartier P. et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet 2008; 372: 383-391.
  • 13 Yokota S, Imagawa T, Mori M. et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet 2008; 371: 998-1006.
  • 14 Ilowite N, Porras O, Reiff A. et al. Anakinra in the treatment of polyarticular-course juvenile rheumatoid arthritis: safety and preliminary efficacy results of a randomized multicenter study. Clinical rheumatology 2009; 28: 129-137.
  • 15 Haupl T, Appel H, Backhaus M. et al. [Biomarkers in rheumatology. Biomarkers and imaging for the diagnosis and stratification of rheumatoid arthritis and spondylarthritis in the ArthroMark network funded by the Federal Ministry of Education and Research]. Zeitschrift fur Rheumatologie 2012; 71: 314-318.
  • 16 de Boer J, Wulffraat N, Rothova A. Visual loss in uveitis of childhood. The British journal of ophthalmology 2003; 87: 879-884.
  • 17 Vastert SJ, Prakken BJ. Paediatric rheumatic disease: Diagnosing macrophage activation syndrome in systemic JIA. Nature reviews 2014; Nov; 640-642
  • 18 Prakken B, Albani S, Martini A. Juvenile idiopathic arthritis. Lancet 2011; 377: 2138-2149.
  • 19 Wu SA, Yeh KW, Lee WI. et al. Persistent improper upregulation of Th17 and T cells in patients with juvenile idiopathic arthritis. Journal of microbiology, immunology, and infection. 2014 Aug 28
  • 20 Lorenzi AR, Morgan TA, Anderson A. et al. Thymic function in juvenile idiopathic arthritis. Annals of the rheumatic diseases 2009; 68: 983-990.
  • 21 Sakaguchi S, Sakaguchi N, Asano M. et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of immunology 1995; 155: 1151-1164.
  • 22 Sakaguchi S, Ono M, Setoguchi R. et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunological reviews 2006; 212: 8-27.
  • 23 Nistala K, Moncrieffe H, Newton KR. et al. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis and rheumatism 2008; 58: 875-887.
  • 24 van Loosdregt J, Vercoulen Y, Guichelaar T. et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 2010; 115: 965-974.
  • 25 Zaiss DM, van Loosdregt J, Gorlani A. et al. Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity 2013; 38: 275-284.
  • 26 van Loosdregt J, Fleskens V, Fu J. et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 2013; 39: 259-271.
  • 27 de Kleer IM, Wedderburn LR, Taams LS. et al. CD4+CD25 bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. Journal of immunology 2004; 172: 6435-6443.
  • 28 de Kleer IM, Kamphuis SM, Rijkers GT. et al. The spontaneous remission of juvenile idiopathic arthritis is characterized by CD30+ T cells directed to human heat-shock protein 60 capable of producing the regulatory cytokine interleukin-10. Arthritis and rheumatism 2003; 48: 2001-2010.
  • 29 Kamphuis S, Hrafnkelsdottir K, Klein MR. et al. Novel self-epitopes derived from aggrecan, fibrillin, and matrix metalloproteinase-3 drive distinct autoreactive T-cell responses in juvenile idiopathic arthritis and in health. Arthritis research & therapy 2006; 8: R178.
  • 30 Wehrens EJ, Vastert SJ, Mijnheer G. et al. Anti-tumor necrosis factor alpha targets protein kinase B/c-Akt-induced resistance of effector cells to suppression in juvenile idiopathic arthritis. Arthritis and rheumatism 2013; 65: 3279-3284.
  • 31 Grom AA, Passo M. Macrophage activation syndrome in systemic juvenile rheumatoid arthritis. The Journal of pediatrics 1996; 129: 630-632.
  • 32 Fall N, Barnes M, Thornton S. et al. Gene expression profiling of peripheral blood from patients with untreated new-onset systemic juvenile idiopathic arthritis reveals molecular heterogeneity that may predict macrophage activation syndrome. Arthritis and rheumatism 2007; 56: 3793-3804.
  • 33 Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annual review of immunology 2009; 27: 621-668.
  • 34 Hinze CH, Fall N, Thornton S. et al. Immature cell populations and an erythropoiesis gene-expression signature in systemic juvenile idiopathic arthritis: implications for pathogenesis. Arthritis research & therapy 2010; 12: R123.
  • 35 Ogilvie EM, Khan A, Hubank M. et al. Specific gene expression profiles in systemic juvenile idiopathic arthritis. Arthritis and rheumatism 2007; 56: 1954-1965.
  • 36 Mellins ED, Macaubas C, Grom AA. Pathogenesis of systemic juvenile idiopathic arthritis: some answers, more questions. Nature reviews. Rheumatology 2011; 7: 416-426.
  • 37 Macaubas C, Nguyen K, Deshpande C. et al. Distribution of circulating cells in systemic juvenile idiopathic arthritis across disease activity states. Clinical immunology 2010; 134: 206-216.
  • 38 Srivastava S, Macaubas C, Deshpande C. et al. Monocytes are resistant to apoptosis in systemic juvenile idiopathic arthritis. Clinical immunology 2010; 136: 257-268.
  • 39 Smolewska E, Stanczyk J, Robak T, Smolewski P. Inhibited apoptosis of synovial fluid lymphocytes in children with juvenile idiopathic arthritis is associated with increased expression of myeloid cell leukemia 1 and XIAP proteins. The Journal of rheumatology 2006; 33: 1684-1690.
  • 40 Wulffraat NM, Rijkers GT, Elst E. et al. Reduced perforin expression in systemic juvenile idiopathic arthritis is restored by autologous stem-cell transplantation. Rheumatology 2003; 42: 375-379.
  • 41 Hazen MM, Woodward AL, Hofmann I. et al. Mutations of the hemophagocytic lymphohistiocytosis-associated gene UNC13D in a patient with systemic juvenile idiopathic arthritis. Arthritis and rheumatism 2008; 58: 567-570.
  • 42 Zhang K, Biroschak J, Glass DN. et al. Macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis is associated with MUNC13-4 polymorphisms. Arthritis and rheumatism 2008; 58: 2892-2896.
  • 43 Grom AA. Natural killer cell dysfunction: A common pathway in systemic-onset juvenile rheumatoid arthritis, macrophage activation syndrome, and hemophagocytic lymphohistiocytosis?. Arthritis and rheumatism 2004; 50: 689-698.
  • 44 Grom AA, Villanueva J, Lee S. et al. Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. The Journal of pediatrics 2003; 142: 292-296.
  • 45 Villanueva J, Lee S, Giannini EH. et al. Natural killer cell dysfunction is a distinguishing feature of systemic onset juvenile rheumatoid arthritis and macrophage activation syndrome. Arthritis research & therapy 2005; 7: R30-R37.
  • 46 Gracie JA, Robertson SE, McInnes IB. Interleukin-18. Journal of leukocyte biology 2003; 73: 213-224.
  • 47 Dinarello CA, Novick D, Puren AJ. et al. Overview of interleukin-18: more than an interferon-gamma inducing factor. Journal of leukocyte biology 1998; 63: 658-664.
  • 48 Dinarello CA. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. The Journal of allergy and clinical immunology 1999; 103: 11-24.
  • 49 Ling XB, Park JL, Carroll T. et al. Plasma profiles in active systemic juvenile idiopathic arthritis: Biomarkers and biological implications. Proteomics 2010; 10: 4415-4430.
  • 50 Frosch M, Ahlmann M, Vogl T. et al. The myeloid-related proteins 8 and 14 complex, a novel ligand of toll-like receptor 4, and interleukin-1beta form a positive feedback mechanism in systemic-onset juvenile idiopathic arthritis. Arthritis and rheumatism 2009; 60: 883-891.
  • 51 Guma M, Ronacher L, Liu-Bryan R. et al. Caspase 1-independent activation of interleukin-1beta in neutrophil-predominant inflammation. Arthritis and rheumatism 2009; 60: 3642-3650.
  • 52 Ravelli A. Macrophage activation syndrome. Current opinion in rheumatology 2002; 14: 548-552.
  • 53 Ravelli A, Grom AA, Behrens EM, Cron RQ. Macrophage activation syndrome as part of systemic juvenile idiopathic arthritis: diagnosis, genetics, pathophysiology and treatment. Genes and immunity 2012; 13: 289-298.
  • 54 Janka GE. Familial and acquired hemophagocytic lymphohistiocytosis. Annual review of medicine 2012; 63: 233-246.
  • 55 Dinarello CA. Interleukin-18 and the pathogenesis of inflammatory diseases. Seminars in nephrology 2007; 27: 98-114.
  • 56 Nold-Petry CA, Lehrnbecher T, Jarisch A. et al. Failure of interferon gamma to induce the anti-inflammatory interleukin 18 binding protein in familial hemophagocytosis. PloS one 2010; 5: e8663.
  • 57 Rigante D, Capoluongo E, Bertoni B. et al. First report of macrophage activation syndrome in hyperimmunoglobulinemia D with periodic fever syndrome. Arthritis and rheumatism 2007; 56: 658-661.
  • 58 Vastert S, Prakken B. Update on research and clinical translation on specific clinical areas: From bench to bedside: How insight in immune pathogenesis can lead to precision medicine of severe juvenile idiopathic arthritis. Best practice & research. Clinical rheumatology 2014; 28: 229-246.
  • 59 Rothmund F, Gerss J, Ruperto N. et al. Validation of relapse risk biomarkers for routine use in patients with juvenile idiopathic arthritis. Arthritis care & research 2014; 66: 949-955.
  • 60 Zandman-Goddard G, Shoenfeld Y. Ferritin in autoimmune diseases. Autoimmunity reviews 2007; 6: 457-463.
  • 61 Berntson L, Nordal E, Aalto K. et al. HLA-B27 predicts a more chronic disease course in an 8-year followup cohort of patients with juvenile idiopathic arthritis. The Journal of rheumatology 2013; 40: 725-731.
  • 62 Pryhuber KG, Murray KJ, Donnelly P. et al. Polymorphism in the LMP2 gene influences disease susceptibility and severity in HLA-B27 associated juvenile rheumatoid arthritis. The Journal of rheumatology 1996; 23: 747-752.
  • 63 Hinks A, Cobb J, Marion MC. et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nature genetics 2013; 45: 664-669.
  • 64 Thompson SD, Sudman M, Ramos PS. et al. The susceptibility loci juvenile idiopathic arthritis shares with other autoimmune diseases extend to PTPN2, COG6, and ANGPT1. Arthritis and rheumatism 2010; 62: 3265-3276.
  • 65 Hinks A, Barton A, John S. et al. Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene. Arthritis and rheumatism 2005; 52: 1694-1699.
  • 66 Martini A. Systemic juvenile idiopathic arthritis. Autoimmunity reviews 2012; 12: 56-59.
  • 67 Fishman D, Faulds G, Jeffery R. et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. The Journal of clinical investigation 1998; 102: 1369-1376.
  • 68 Fife MS, Gutierrez A, Ogilvie EM. et al. Novel IL10 gene family associations with systemic juvenile idiopathic arthritis. Arthritis research & therapy 2006; 8: R148.
  • 69 Moller JC, Paul D, Ganser G. et al. IL10 promoter polymorphisms are associated with systemic onset juvenile idiopathic arthritis (SoJIA). Clinical and experimental rheumatology 2010; 28: 912-918.
  • 70 Donn RP, Shelley E, Ollier WE. et al. A novel 5’-flanking region polymorphism of macrophage migration inhibitory factor is associated with systemic-onset juvenile idiopathic arthritis. Arthritis and rheumatism 2001; 44: 1782-1785.
  • 71 De Benedetti F, Meazza C, Vivarelli M. et al. Functional and prognostic relevance of the -173 polymorphism of the macrophage migration inhibitory factor gene in systemic-onset juvenile idiopathic arthritis. Arthritis and rheumatism 2003; 48: 1398-1407.
  • 72 Date Y, Seki N, Kamizono S. et al. Identification of a genetic risk factor for systemic juvenile rheumatoid arthritis in the 5’-flanking region of the TNFalpha gene and HLA genes. Arthritis and rheumatism 1999; 42: 2577-2582.
  • 73 Pascual V, Allantaz F, Arce E. et al. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. The Journal of experimental medicine 2005; 201: 1479-1486.
  • 74 Allantaz F, Chaussabel D, Stichweh D. et al. Blood leukocyte microarrays to diagnose systemic onset juvenile idiopathic arthritis and follow the response to IL-1 blockade. The Journal of experimental medicine 2007; 204: 2131-2144.
  • 75 Pascual V, Allantaz F, Patel P. et al. How the study of children with rheumatic diseases identified interferon-alpha and interleukin-1 as novel therapeutic targets. Immunological reviews 2008; 223: 39-59.
  • 76 Ling XB, Macaubas C, Alexander HC. et al. Correlation analyses of clinical and molecular findings identify candidate biological pathways in systemic juvenile idiopathic arthritis. BMC medicine 2012; 10: 125.
  • 77 Hunter PJ, Nistala K, Jina N. et al. Biologic predictors of extension of oligoarticular juvenile idiopathic arthritis as determined from synovial fluid cellular composition and gene expression. Arthritis and rheumatism 2010; 62: 896-907.
  • 78 Church LD, Cook GP, McDermott MF. Primer: inflammasomes and interleukin 1beta in inflammatory disorders. Nature clinical practice. Rheumatology 2008; 4: 34-42.
  • 79 Stuhlmuller B, Haupl T, Hernandez M. et al. CD11c as a transcriptional biomarker to predict response to anti-TNF monotherapy with adalimumab in patients with rheumatoid arthritis. Clinical pharmacology and therapeutics 2010; 87: 311-321.
  • 80 Jiang K, Sawle AD, Frank MB. et al. Whole blood gene expression profiling predicts therapeutic response at six months in patients with polyarticular juvenile idiopathic arthritis. Arthritis & rheumatology 2014; 66: 1363-1371.
  • 81 Toonen EJ, Gilissen C, Franke B. et al. Validation study of existing gene expression signatures for anti-TNF treatment in patients with rheumatoid arthritis. PloS one 2012; 7: e33199.
  • 82 Jarvis JN, Wang W, Moore HT. et al. In vitro induction of proinflammatory cytokine secretion by juvenile rheumatoid arthritis synovial fluid immune complexes. Arthritis and rheumatism 1997; 40: 2039-2046.
  • 83 Piper C, Pesenacker AM, Bending D. et al. T cell expression of granulocyte-macrophage colony-stimulating factor in juvenile arthritis is contingent upon Th17 plasticity. Arthritis & rheumatology 2014; 66: 1955-1960.
  • 84 Aggarwal A, Agarwal S, Misra R. Chemokine and chemokine receptor analysis reveals elevated interferon-inducible protein-10 (IP)-10/CXCL10 levels and increased number of CCR5+ and CXCR3+ CD4 T cells in synovial fluid of patients with enthesitis-related arthritis (ERA). Clinical and experimental immunology 2007; 148: 515-519.
  • 85 Kawashima M, Yamamura M, Taniai M. et al. Levels of interleukin-18 and its binding inhibitors in the blood circulation of patients with adult-onset Still’s disease. Arthritis and rheumatism 2001; 44: 550-560.
  • 86 Crabe S, Guay-Giroux A, Tormo AJ. et al. The IL-27 p28 subunit binds cytokine-like factor 1 to form a cytokine regulating NK and T cell activities requiring IL-6R for signaling. Journal of immunology 2009; 183: 7692-7702.
  • 87 Rosenkranz ME, Wilson DC, Marinov AD. et al. Synovial fluid proteins differentiate between the subtypes of juvenile idiopathic arthritis. Arthritis and rheumatism 2010; 62: 1813-1823.
  • 88 Holzinger D, Frosch M, Kastrup A. et al. The Toll-like receptor 4 agonist MRP8/14 protein complex is a sensitive indicator for disease activity and predicts relapses in systemic-onset juvenile idiopathic arthritis. Annals of the rheumatic diseases 2012; 71: 974-980.