Hamostaseologie 2005; 25(01): 23-32
DOI: 10.1055/s-0037-1619642
Original Article
Schattauer GmbH

Gerinnung, Entzündung und Immunantwort[ * ]

Ein phylogenetisches altes Prinzip als Ursache der Verbrauchskoagulopathie?Coagulation, inflammation and immune response – an evolutionary conserved plan as cause for disseminated intravasal coagulation?[ * ]
A. Bierhaus
1   Medizinische Klinik I, Universität Heidelberg
,
P. P. Nawroth
1   Medizinische Klinik I, Universität Heidelberg
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Zusammenfassung

Die gleichzeitige Aktivierung der Immunantwort und des Gerinnungssystems nach Verletzung ist ein phylogenetisch altes, adaptives Prinzip, das bereits in frühen Entwicklungsstufen von Eukaryonten beobachtet wird. Die enge Verbindung von Gerinnung, Entzündung und Immunabwehr blieb während der Evolution erhalten und kann im Menschen bei zahlreichen physiologischen Reaktionen auf potenziell schädigende Einflüsse nachgewiesen werden.

Summary

The concomitant activation of the immune response and the coagulation system in response to injury represents a phylogenetic old and adaptive principle already present in the early eukaryotic development. The close connection between coagulation, inflammation, and immune defense has been conserved during evolution and can still be found in humans in a number of physiologic reactions to potentially detrimental effects.

* Mit freundlicher Genehmigung des Springer-Verlags entnommen aus: Bierhaus A, Nawroth PP. Gerinnung und Infektabwehr – ein phylogenetisches Erfolgskonzept als Ursache disseminierter intravasaler Gerinnung? In: Martin E, Nawoth P (Hrsg). Fachübergreifende Aspekte der Hämostaseologie V. Heidelberg: Springer 2002; 1–27.


 
  • Literatur

  • 1 Abraham E. Tissue factor inhibition and clinical trial results of tissue factor pathway inhibitor in sepsis. Crit Care Med 2000; 28: S31-3.
  • 2 Aliprantis AO, Yang RB, Weiss DS. et al. The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J 2000; 19: 3325-36.
  • 3 Anderson KV. Toll signaling pathways in the innate immune response. Curr Opin Immunol 2000; 12: 13-9.
  • 4 Arbibe L, Mira JP, Teusch N. et al. Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol 2000; 1: 533-40.
  • 5 Baeuerle PA. Proinflammatory signaling: Last pieces in the NF-κB puzzle?. Current Biology 1998; 8: R19-22.
  • 6 Baeuerle PA, Baltimore D. NF-κB: ten years after. Cell 1996; 87: 13-20.
  • 7 Baeuerle PA, Henkel T. Function and activation of NF-κB in the immune system. Annu Rev Immun 1994; 12: 141-79.
  • 8 Barnes PJ, Karin M. Nuclear factor-kB – a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066-71.
  • 9 Baumann H, Gauldie J. The acute phase response. Immunol Today 1994; 15: 74-80.
  • 10 Beutler B, Poltorak A. Sepsis and evolution of the innate immune response. Crit Care Med 2001; 29: S2-7.
  • 11 Bergner A, Oganessyan V, Muta T. et al. Crystal structure of a coagulogen, the clotting protein from horseshoe crab: a structural homologue of nerve growth factor. EMBO J 1996; 15: 6789-97.
  • 12 Bergner A, Muta T, Iwanaga S. et al. Horseshoe crab coagulogen is an invertebrate protein with a nerve growth factor-like domain. Biol Chem 1997; 378: 283-7.
  • 13 Bernard GR, Vincent JL, Laterre PF. et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344: 699-709.
  • 14 Bierhaus A, Chen J, Liliensiek B. et al. LPS and cytokine activated endothelium. Sem Thromb Hemost 2000; 26: 571-87.
  • 15 Böhrer H, Nawroth PP. Pathophysiologie, Klinik und Therapie intensivmedizinischer Krankheitsbilder mit DIC. In: Hach-Wunderle V, Nawroth PP. (Hrsg). Lebensbedrohliche Gerinnungsstörungen in der Intensivmedizin. Heidelberg: Springer; 1996: 3-43.
  • 16 Böhrer H, Qiu F, Zimmermann T. et al. Role of NFkB in the mortality of sepsis. J Clin Invest 1997; 100: 972-85.
  • 17 Bouchon A, Facchetti F, Weigand MA. et al. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 2001; 410: 1103-7.
  • 18 Bulger EM, Maier RV. Lipid mediators in the pathophysiology of critical illness. Crit Care Med 2000; 28: N27-36.
  • 19 Carrell RW, Boswell DR. Serpins: the superfamily of plasma serine protease inhibitors. Barrett AJ, Salvesen G. (eds). New York: (¦ Ort?) Elsevier; 1986: 403-20.
  • 20 Dhainaut JF, Vallet B. Combined procoagulant and innate immune responses to infection: toward more potent drugs in septic patients. Crit Care Med 2001; 29: 205-7.
  • 21 Dickneite G, Paques EP. Reduction of mortality with antithrombin III in septicemic rats: a study of Klebsiella pneumoniae induced sepsis. Thromb Haemost 1993; 69: 98-102.
  • 22 Drushay MS, Asling B, Hultmark D. Origins of immunity: relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc Natl Acad Sci USA 1996; 93: 10343-7.
  • 23 Ducceschi V. Untersuchungen über die Blutgerinnung bei wirbellosen Tieren. Hofmeisters Beitr Chem Physiol Pathol 1903; 3: 378-84.
  • 24 Faust SN, Heyderman RS, Levin M. Coagulation in severe sepsis: a central role for thrombomodulin and activated protein C. Crit Care Med 2001; 29: S62-8.
  • 25 Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science 1996; 272: 50-3.
  • 26 Fisher Jr, CJ, Yan SB. Protein C levels as a prognostic indicator of outcome in sepsis and related diseases. Crit Care Med 2000; 28 (Suppl. 09) S49-56.
  • 27 Fujimoto K, Okino N, Kawabata SI. et al. Nucleotide sequence of the cDNA encoding the proenzyme of phenol oxidase A1 of Drosophila melanogaster. Proc NatlAcad Sci USA 1995; 92: 7769-73.
  • 28 Gokudan S, Muta T, Tsuda R. et al. Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proc Natl Acad Sci USA 1999; 96: 10086-91.
  • 29 Gonzalez-Crespo S, Levine M. Related target enhancers for dorsal and NF-kappa B signaling pathways. Science 1994; 264: 255-8.
  • 30 Govind S, Steward R. Dorsoventral formation in Drosophila: signal transduction and nuclear targeting. Trends Genet 1991; 7: 119-25.
  • 31 Ghosh S, May MJ, Kopp EB. NF-kB and Rel proteins. Evolutionary conserved mediators of immune response. Annu Rev Immunol 1998; 16: 225-60.
  • 32 Harada-Suzuko T, Moriata T, Iwanaga S. et al. Further studies on the chromogenic acid method for bacterial endotoxins using horseshoe crab (Tachypleus tridenatus) hemocyte lysate. J Biochem 1992; 92: 793-800.
  • 33 Hedengren M, Asling B, Dushay M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 1999; 4: 827-37.
  • 34 Hemmi H, Takeuchi O, Kawai T. et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740-5.
  • 35 Hoffmann JA, Reichhart JM. Drosophila Immunity. Trends Cell Biol 1997; 7: 309-16.
  • 36 Hoffmann JA, Kafatos FC, Janeway CA. et al. Phylogenetic perspectives in innate immunity. Science 1999; 284: 1313-8.
  • 37 Hoshino K, Takeuchi O, Kawai T. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999; 162: 3749-52.
  • 38 Hultmark D. Immune reactions in drosophila and other insects: a model for innate immunity. Trends Genet 1993; 9: 178-83.
  • 39 Imler JL, Hoffmann JA. Signaling mechanism in the antimicrobial host defense of drosophila. Curr Opin Microbiol 2000; 3: 16-22.
  • 40 Imler JL, Hoffmann JA. Toll and Toll-like proteins: an ancient family of receptors signaling infection. Rev Immunogenet 2000; 2: 294-304.
  • 41 Imler JL, Tauszig S, Jouanguy E. et al. LPS-induced immune response in Drosophila. J Endotoxin Res 2000; 6: 459-62
  • 42 Imler JL, Hoffmann JA. Toll receptors in innate immunity. Trends Cell Biol 2001; 11: 304-11.
  • 43 Inthorn D, Hoffmann JN, Hartl WH. et al. Effect of antithrombin III supplementation on inflammatory response in patients with severe sepsis. Shock 1998; 10: 90-6.
  • 44 Ip VT, Reach M, Engstrom Y. et al. Dif, a dorsalrelated gene that mediates an immune response in Drosophila. Cell 1993; 75: 753-63.
  • 45 Ingalls RR, Heine H, Lien E. et al. Lipopolysaccharide recognition, CD14, and lipopolysaccharide receptors. Infect Dis Clin North Am 1999; 13: 341-53.
  • 46 Iwanaga S, Miyata T, Tokunaga F. et al. Molecular mechanism of hemolymph clotting system in Limulus. Thromb Res 1992; 68: 1-32.
  • 47 Iwanaga S, Kawabata S. Evolution and phylogeny of defense molecules associated immunity in horseshoe crab. Frontiers Biosci 1998; 3: 973-84.
  • 48 Iwanaga S. Primitive coagulation systems and their message to modern biology. Thromb Haemost 1993; 70: 48-55.
  • 49 Iwanaga S, Muta T, Shigenaga T. et al. Role of hemocyte-derived granular components in invertebrate defense. Ann NY Acad Sci 1994; 712: 102-16.
  • 50 Jagadeeswaran P, Sheehan JP. Analysis of blood coagulation in the zebrafish. Blood Cells Mol Dis 1999; 25: 239-49.
  • 51 Kaiser V, Diamond G. Expression of mammalian defensin genes. J Leukoc Biol 2000; 68: 779-84.
  • 52 Kaisho T, Akira S. Toll-like receptors and their signaling mechanism in innate immunity. Acta Odontol Scand 2001; 59: 124-30.
  • 53 Kawasaki H, Nose T, Muta T. et al. Head-to-tail polymerization of coagulin, a clottable protein of the horseshoe crab. J Biol Chem 2000; 275: 35297-301.
  • 54 Khush RS, Lemaitre B. Genes that fight infection: what the Drosophila genome says about animal immunity. Trends Genet 2000; 16: 442-9.
  • 55 Lasch HG, Heene DL, Huth K. et al. Pathophysiology, clinical manifestations and therapy of consumption-coagulopathy (Verbrauchskoagulopathie). Am J Cardiol 1967; 20: 381-91.
  • 56 Lee WL, Downey GP. Coagulation inhibitors in sepsis and disseminated intravascular coagulation. Intensive Care Med 2000; 26: 1701-6.
  • 57 Lemaitre B, Nicolas E, Michaut L. et al. The dorsoventral regulatory gene cassette spaetzle/Toll/cactus controls the potent antifungal reesponse in Drosophila adults. Cell 1996; 86: 973-83.
  • 58 Lemaitre B, Reichart JM, Hoffmann JA. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 1997; 94: 14614-9.
  • 59 Levashina EA, Langley E, Green C. et al. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 1999; 285: 1917-9.
  • 60 Levi M, de Jonge E, van der Poll T. Rationale for restoration of physiological anticoagulant pathways in patients with sepsis and disseminated intravascular coagulation. Crit Care Med 2001; 29: S90-4.
  • 61 Levin J. The horseshoe crab: a model for gram-negative sepsis in marine organisms and humans. Prog Clin Biol Res 1988; 272: 3-15.
  • 62 Means TK, Golenbock DT, Fenton MJ. The biology of Toll-like receptors. Cytokine Growth Factor Rev 2000; 11: 219-32.
  • 63 Medzhitov R, Preston Hurlburt P, Janeway Jr. CA. A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature 1997; 388: 394-7.
  • 64 Mesters RM, Helterbrand J, Utterback BG. et al. Prognostic value of protein C concentrations in neutropenic patients at high risk of severe septic complications. Crit Care Med 2000; 28: 2209-16.
  • 65 Miura Y, Kawabata S, Wakamiya Y. et al. A limulus intracellular coagulation inhibitor Type 2. J Biol Chem 1995; 270: 558-65.
  • 66 Modlin RL, Brightbill HD, Godowski PJ. The toll of innate immunity on microbial pathogens. N Engl J Med 1999; 340: 1834-5.
  • 67 Muta T, Nakamura T, Furunaka H. et al. Primary structures and functions of anti-lipopolysaccharide factor and tachyplesin peptide found in horseshoe crab hemocytes. Adv Exp Med Biol 1990; 56: 273-85.
  • 68 Muta T, Hashimoto R, Miyata T. et al. Proclotting enzyme from horseshoe crab hematocytes. cDNA cloning, disulfid location and subcellular localization. J Biol Chem 1990; 265: 22426-33.
  • 69 Muta T, Miyata T, Misumi Y. et al. Limulus factor C: An endotoxin sensitive serine protease zymogen with mosaic structure of complement-like, epidermal growth factor like and lectin-like domains. J Biol Chem 1991; 266: 6552-61.
  • 70 Muta T, Oda T, Iwanaga S. Horseshoe crab coagulation factor B. a unique serine protease zymogen activated vy cleavage of Ile bond. J Biol Chem 1993; 268: 21384-8.
  • 71 Muta T, Iwanaga S. The role of hemolymph coagulation in innate immunity. Curr Opin Immunol 1996; 8: 41-7.
  • 72 Nagai T, Kawabata S. A link between blood coagulation and prophenol oxidase activation in arthropod host defense. J Biol Chem 2000; 275: 29264-7.
  • 73 Nakamura S, Takagi S, Iwanaga M. et al. Amino acid sequence produced from horse shoe crab coagulogen during gel formation: homologies with homologies with primate fibrinopeptide B. Biochem Biophys Res Commun 1976; 72: 902-8.
  • 74 Nakamura S, Morita T, Hazard-Suzuki T. et al. A clotting enzyme associated with the hemolymph coagulation system of the horseshoe crab (Tachypleus tridenatus): its purification and characterisation. J Biochem 1982; 92: 781-92.
  • 75 Niwa M, Hua H, Iwanaga S. et al. Biological activities of anti-LPS factor and LPS binding peptide from horseshoe crab amoebocytes. Adv Exp Med Biol 1990; 256: 257-71.
  • 76 Novitsky TJ. Limitations of the Limulus amebocyte lysate test in demonstrating circulating lipopolysaccharides. Ann NY Acad Sci 1998; 851: 416-21.
  • 77 Okajima K, Uchiba M. The anti-inflammatory properties of antithrombin III: new therapeutic implications. Semin Thromb Hemost 1998; 24: 27-32.
  • 78 Opal S, Thijs L, Cavaillon JM. et al. Roundtable I: relationships between coagulation and inflammatory processes. Crit Care Med 2000; 28: S81-2.
  • 79 Opal SM. Phylogenetic and functional relationships between coagulation and the innate immune response. Crit Care Med 2000; 28: S77-80.
  • 80 Opal SM. Therapeutic rationale for antithrombin III in sepsis. Crit Care Med 2000; 28: S34-7.
  • 81 Opal SM, Palardy JE, Parejo NA. et al. The activity of tissue factor pathway inhibitor in experimental models of superantigen-induced shock and polymicrobial intra-abdominal sepsis. Crit Care Med 2001; 29: 13-7.
  • 82 Poltorak A, He X, Smirnova I. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282: 2085-8.
  • 83 Qureshi ST, Lariviere L, Leveque G. et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 1999; 189: 615-25.
  • 84 Rietschel ET, Westphal O. Endotoxin: historical perspectives. In: Brade H, Opal SM, Vogel SN. et al. (eds). Endotoxin in health and disease. New York: Marcel Dekker; 1999: 1-30.
  • 85 Robey FA, Liu TY. Limulin: a C-reactive protein from Limulus polyphemus. J Biol Chem 1981; 256: 969-75.
  • 86 Roth RI, Levin J. Purification of Limulus polyphemus proclotting enzyme. J Biol Chem 1992; 267: 24097-102.
  • 87 Roth RI, Su D, Child AH. et al. Limulus antilipopolysaccharide factor prevents mortality late in the course of endotoxemia. J Infect Dis 1998; 177: 388-94.
  • 88 Saito T, Kawabata S, Shigenaga T. et al. A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence and antibacterial activity. J Biochem 1995; 1117: 1131-7.
  • 89 Seki N, Muta T, Oda T. et al. Horseshoe crab (1,3)-beta-D-glucan-sensitive coagulation factor G. A serine protease zymogen heterodimer with similarities to beta-glucan-binding proteins. J Biol Chem 1995; 270: 986
  • 90 Sheehan J, Templer M, Gregory M. et al. Demonstration of the extrinsic coagulation pathway in teleostei: Identification of zebrafish coagulation factor VII. Proc Nat Acad Sci USA 2001; 98: 8768-73.
  • 91 Soderhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 1998; 10: 23-8.
  • 92 Stenflo J. Contributions of Gla and EGF-like domains to the function of vitamin K-dependent coagulation factors. Crit Rev Eukaryot Gene Expr 1999; 9: 59-88.
  • 93 Takeuchi O, Hoshino K, Kawai T. et al. Differential roles of TLR2 and TLR4 in recognition of gramnegative and gram-positive bacterial cell wall components. Immunity 1999; 11: 443-51.
  • 94 Tanaka S, Nakamura T, Morita T. et al. Limulus anti-LPS factor: an anticoagulant which inhibits the endotoxin mediated activation of Limulus coagulation system. Biochem Biophys Res Commun 1982; 105: 717-23.
  • 95 Ten Cate H, Schoenmakers SH, Franco R. et al. Microvascular coagulopathy and disseminated intravascular coagulation. Crit Care Med 2001; 29: S95-8.
  • 96 Ulevitch RJ. New therapeutic targets revealed through investigations of innate immunity. Crit Care Med 2001; 29 (Suppl. 07) S8-12.
  • 97 Van Zoelen EJ, Stortelers C, Lenferink AE. et al. The EGF domain: requirements for binding to receptors of the ErbB family. Vitam Horm 2000; 59: 99-131.
  • 98 Vallet B, Wiel E. Endothelial cell dysfunction and coagulation. Crit Care Med 2001; 29: S36-41.
  • 99 Zhang X, Maizels RM. Serine proteinase inhibitors from nematodes and the arms race between host and pathogen. Trends Biochem Sci 2001; 26: 191-7.
  • 100 Zhang G, Ghosh S. Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest 2001; 107: 13-9.