Hamostaseologie 2005; 25(01): 18-22
DOI: 10.1055/s-0037-1619646
Original Article
Schattauer GmbH

Diabetische Mikroangiopathie

Zelluläre Interaktionen bei HyperglykämieDiabetic microangiopathy: vascular cell crosstalk in hyperglycaemia
H.-P. Hammes
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Zusammenfassung

Die diabetische Retinopathie ist die häufigste mikrovaskuläre Komplikation des Diabetes mellitus. Sie hängt im Wesentlichen von der Stoffwechselkontrolle durch den Patienten ab, gemessen am HbA1c. Die Schädigungskaskade bringt Veränderungen im zellulären Crosstalk der Retinakapillare mit sich, an deren Anfang der Verlust der Perizyten steht. Durch Untersuchungen an transgenen und diabetischen Modellen kann die relative Bedeutung dieses Phänomens eingeordnet werden. Neue Einblicke in die biochemischen und zellbiologischen Zusammenhänge zwischen Hyperglykämie und vaskulärem Zellschaden begründen metabolische Signalhemmer als neue Therapieansätze zur Behandlung der diabetischen Mikroangiopathie.

Summary

Diabetic retinopathy is the most common microvascular complication in diabetes mellitus, mostly determined by chronic glycaemia as measured by HbA1c. The sequence of events involves changes in the cellular crosstalk of the retinal capillary, initiated by the loss of intramural pericytes. Data from transgenic and diabetic models allow to assess the relative importance of this phenomenon. New insight into biochemical and cell biological interactions from hyperglycaemia to vascular injury establish metabolic signal blockers as novel therapeutic approaches for diabetic microangiopathy.

 
  • Literatur

  • 1 Allt G, Lawrenson JG. Pericytes: cell biology and pathology. Cells Tissues Organs 2001; 169: 1-11.
  • 2 Ashton N. Pathogenesis of diabetic retinopathy. In: Little HL, Jack RL, Patz AP. et al. (eds). Diabetic Retinopathy. New York: Thieme-Stratton Inc.; 1983: 85-106.
  • 3 Babaei-Jadidi R, Karachalias N, Ahmed N. et al. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 2003; 52: 2110-20.
  • 4 Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 1998; 125: 1591-8.
  • 5 Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813-20.
  • 6 Cameron NE, Nangle MR, Gibson TM. et al. Benfotiamine treatment improves vascular endothelium and nerve function in diabetic rats. 64. Jahrestagung der Amerikanischen Diabetes-Gesellschaft. Orlando: 2004. (OR 148).
  • 7 Cogan DG, Toussaint D, Kuwabara T. Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol 1961; 66: 366-78.
  • 8 Enge M, Bjarnegård V, Gerhardt H. et al. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 2002; 21: 4307-16.
  • 9 Engerman RL, Kern TS. Retinopathy in animal models of diabetes. Diabetes Metab Rev 1995; 11: 109-20.
  • 10 Fruttiger M. Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Invest Ophthalmol Vis Sci 2002; 43: 522-7.
  • 11 Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003; 17: 1835-40.
  • 12 Hammes HP, Du X, Edelstein D. et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 2003; 9: 294-9.
  • 13 Hammes HP, Lin J, Renner O. et al. Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 2002; 51: 3107-12.
  • 14 Hammes HP, Lin J, Wagner P. et al. Diabetesinduced Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 2004; 53: 1104-10.
  • 15 Hellstrom M, Kalén M, Lindahl P. et al. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 1999; 126: 3047-55.
  • 16 Kuwabara T, Cogan DG. Studies of retinal vascular patterns. I. Normal architecture. Arch Ophthalmol 1960; 64: 904-11.
  • 17 Lindahl P, Johansson BR, Levéen P. et al. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997; 277: 242-5.
  • 18 Nehls V, Dreckhahn D. The versatility of microvascular pericytes: from mesenchyme to smooth muscle?. Histochemistry 1993; 99: 1-12.
  • 19 Tathmann W, Haastert B, Icks A. et al. High prevalence of undiagnosed diabetes mellitus in Southern Germany: target populations for efficient screening. The KORA survey 2000. Diabetologia 2003; 46: 182-9.
  • 20 Thurston G, Rudge JS, Ioffe E. et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000; 6: 460-3.
  • 21 Trautner C, Haastert B, Giani G. et al. Incidence of blindness in southern Germany between 1990 and 1998. Diabetologia 2001; 44: 147-50.
  • 22 Uemura A, Ogawa M, Hirashima M. et al. Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Invest 2002; 110: 1619-28.
  • 23 Wong TY. Is retinal photography useful in the measurement of stroke risk?. Lancet Neurol 2004; 3: 179-83.
  • 24 Zhang Y, Stone J. Role of astrocytes in the control of developing retinal vessels. Invest Ophthalmol Vis Sci 1997; 38: 1653-66.
  • 25 Zmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414: 782-7.