Osteologie 2012; 21(03): 186-192
DOI: 10.1055/s-0037-1621684
Osteonekrose des Kiefers
Schattauer GmbH

Pathophysiologie des Knochenstoffwechsels bei Osteonekrosen im Zusammenhang mit starker antiresorptiver Therapie

Pathophysiology of bone metabolism in osteonecrosis associated with antiresorptive treatment
F. Jakob
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
,
L. Seefried
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
,
R. Ebert
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
› Author Affiliations
Further Information

Publication History

eingereicht: 13 July 2012

angenommen: 18 July 2012

Publication Date:
04 January 2018 (online)

Zusammenfassung

Osteonekrosen des Kiefers sind mit der hoch dosierten Langzeittherapie von Knochenmetastasen mit Bisphosphonaten und Denosumab, selten auch mit der niedriger dosierten Therapie der Osteoporose als unerwünschte Ereignisse assoziiert. Wahrscheinlich müssen die beiden starken Antiresorptiva als einer von mehreren Risikofaktoren gelten, die im Zusammenwirken die Zerstörung von Infek tionsbarrieren begünstigen und die Regeneration des betroffenen Gewebes verhindern. Mechanische Verletzung bei der Nahrungsaufnahme oder bei oralchirurgischen Eingriffen und medikamentöse Einflüsse wie Chemotherapie zerstören die Epithelbarriere, gefolgt von medikamentöser Beeinträchtigung und Abtötung der Zellen für die verschiedenen immunologischen Verteidigungslinien, das „innate immune system” (Monozyten/Makrophagen und Granulozyten) und das adaptive Immunsystem (B-und T-Zellen). Osteoklasten als Abräumer des knöchernen Gewebsdetritus werden ebenso beeinträchtigt wie möglicherweise Osteoblastenvorläufer und Endothelien als Ausgangspunkt der knöchernen Regeneration. Der Anteil der Bisphosphonate an den genannten Vorgängen beinhaltet die Einleitung der Apoptose von Monozyten und Osteoklasten und kann theoretisch – so genügend hohe Konzentrationen erreicht werden – auch zur Apoptose osteoblastärer, epithelialer und endothelialer Zellen beitragen. Chemotherapeutika und Immunsuppressiva haben besonders starke Einflüsse auf die Zellen des innate und adaptiven Immunsystems. Letztlich erscheint die Osteonekrose des Kiefers als eine facettenreiche Erkrankung, zu der starke Antiresorptiva wie Bisphosphonate und Denosumab nur einen Teil beitragen, der allerdings im Zusammenhang mit anderen Risikofaktoren nicht unwesentlich ist. Weitere Forschung ist erforderlich für die Klärung der Frage, ob die Biologie des Kieferknochens aufgrund der entwicklungsbiologischen Abstammung Besonderheiten aufweist, welche die Suszeptibilität begünstigen, oder ob die ausgesprochen hohe Exposition dieser Region zu Bakterien und Pilzen im Kontext mit ernsthaft eingeschränkten Immunund Gewebereparaturfunktionen der ausschlaggebende Faktor ist.

Summary

Osteonecroses of the jaw are adverse events associated with high dose and long term bisphosphonate and denosumab treatment regimens of bone metastases and may rarely occur in low dose indications like osteoporosis. Both bisphosphonates and denosumab as strong antiresorptive agents are obvious risk factors besides others which favor destruction/ alterations of infection barriers and impairment of tissue regeneration. Mechanical injury during nutrition or due to oral surgery as well as treatment associated factors during chemotherapy destroy the epithelial barrier, which is followed by destruction of cells active in various lines of defense against infection, e. g. the innate immune system (monocytes/ macrophages and granulocytes) and the adaptive immune system (T-and B-cells). Osteoclasts which remove bone detritus are impaired, as are osteoblast precursors and endothelial cells, being the sources of bone regeneration. Factors that can be exaggerated by bisphosphonates are induction of apoptosis in monocytes and osteoclasts and – given very high bisphosphonate concentrations can be achieved in the microenvironment – also osteoblastic, osteocytic, epithelial and endothelial cells can be forced into apoptosis. Chemotherapeutic and immunosuppressive compounds clearly influence the cells of the adaptive immune system. In conclusion osteonecrosis of the jaw appears to be a multifaceted disease which is only partly, but substantially propagated by antiresorptives like bisphosphonates and denosumab. Clearly further research is needed to unravel questions like to what extend the developmental biology of bone derived from the neural crest confers a special susceptibility to the disease or if the preference for maxillary bone simply is due to their comparably high exposure to bacteria and fungi in the context of severely impaired immune and repair functions.

 
  • Literatur

  • 1 Arrain Y, Masud T. A current update on osteonecrosis of the jaw and bisphosphonates. Dental update 2011; 38: 672-676 678.
  • 2 Benisch P, Schilling TM, Klein-Hitpass L. et al. The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One. 2012 in press.
  • 3 Biswas P, Zanello LP. 1alpha,25(OH)(2) vitamin D(3) induction of ATP secretion in osteoblasts. J Bone Miner Res 2009; 24: 1450-1460.
  • 4 Breuil V, Schmid-Antomarchi H, Schmid-Alliana A. et al. The receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) is a new chemo tactic factor for human monocytes. FASEB journal 2003; 17: 1751-1753.
  • 5 Chang MK, Raggatt LJ, Alexander KA. et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 2008; 181: 1232-1244.
  • 6 Clezardin P. Bisphosphonates' antitumor activity: an unravelled side of a multifaceted drug class. Bone 2011; 48: 71-79.
  • 7 Compston J. Pathophysiology of atypical femoral fractures and osteonecrosis of the jaw. Osteoporosis international 2011; 22: 2951-2961.
  • 8 Cote CK, Rea KM, Norris SL. et al. The use of a model of in vivo macrophage depletion to study the role of macrophages during infection with Bacillus anthracis spores. Microbial pathogenesis 2004; 37: 169-175.
  • 9 Cozin M, Pinker BM, Solemani K. et al. Novel therapy to reverse the cellular effects of bisphosphonates on primary human oral fibroblasts. Journal of oral and maxillofacial surgery 2011; 69: 2564-2578.
  • 10 Duque G, Vidal C, Rivas D. Protein isoprenylation regulates osteogenic differentiation of mesenchymal stem cells: effect of alendronate, and farnesyl and geranylgeranyl transferase inhibitors. British journal of pharmacology 2011; 162: 1109-1118.
  • 11 Ebert R, Zeck S, Krug R. et al. Pulse treatment with zoledronic acid causes sustained commitment of bone marrow derived mesenchymal stem cells for osteogenic differentiation. Bone 2009; 44: 858-864.
  • 12 Ebert R, Zeck S, Meissner-Weigl J. et al. Kruppel-like factors KLF2 and 6 and Ki-67 are direct targets of zoledronic acid in MCF-7 cells. Bone 2012; 50: 723-732.
  • 13 Ebetino FH, Hogan AM, Sun S. et al. The relationship between the chemistry and biological activity of the bisphosphonates. Bone 2011; 49: 20-33.
  • 14 Ferrari-Lacraz S, Ferrari S. Do RANKL inhibitors (denosumab) affect inflammation and immunity?. Osteoporosis international 2011; 22: 435-446.
  • 15 Fouque-Aubert A, Chapurlat R. Influence of RANKL inhibition on immune system in the treatment of bone diseases. Joint, bone, spine: revue du rhumatisme 2008; 75: 5-10.
  • 16 Gerstenfeld LC, Sacks DJ, Pelis M. et al. Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. Journal of bone and mineral research 2009; 24: 196-208.
  • 17 Granite EL. Are nitrogen-containing intravenous bisphosphonates implicated in osteonecrosis of appendicular bones and bones other than the jaws?. A survey and Literature review. Journal of oral and maxillofacial surgery 2012; 70: 837-841.
  • 18 Hajishengallis G. Too old to fight? Aging and its toll on innate immunity. Molecular oral microbiology 2010; 25: 25-37.
  • 19 Hans M, Hans VM. Toll-like receptors and their dual role in periodontitis: a review. Journal of oral science 2011; 53: 263-271.
  • 20 Hofbauer LC, Jakob F, Felsenberg D. Bisphosphonates and atypical femoral fractures. The New England journal of medicine 2010; 363: 1084 author reply 1084–1085.
  • 21 Hokugo A, Christensen R, Chung EM. et al. Increased prevalence of bisphosphonate-related osteonecrosis of the jaw with vitamin D deficiency in rats. Journal of bone and mineral research 2010; 25: 1337-1349.
  • 22 Jacobsen C, Metzler P, Rössle M. et al. Osteopathology induced by bisphosphonates and dental implants: clinical observations. Clin Oral Investig. 2012 Mar 15. [Epub ahead of print]
  • 23 Jakob F, Benisch P, Ebert R. et al. Fracture healing in osteoporosis – cellular defects and alterations of regulation (Zelluläre Defekte und Regulationsstörungen bei der Heilung osteoporotischer Frakturen). Osteologie/Osteology 2011; 20: 23-28.
  • 24 Jin J, Wang L, Wang XK. et al. Risedronate inhibits bone marrow mesenchymal stem cell adipogenesis and switches RANKL/OPG ratio to impair osteoclast differentiation. J Surg Res. 2012 Mar 31. [Epub ahead of print]
  • 25 Kimachi K, Kajiya H, Nakayama S. et al. Zoledronic acid inhibits RANK expression and migration of osteoclast precursors during osteoclastogenesis. Naunyn-Schmiedeberg's archives of pharmacology 2011; 383: 297-308.
  • 26 Kuratani S, Adachi N, Wada N. et al. Developmental and evolutionary significance of the mandibular arch and prechordal/premandibular cranium in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. J Anat 2012; Apr 16. DOI: doi: 10.1111/j.1469–7580.2012.01505.x.. [Epub ahead of print]
  • 27 Landesberg R, Woo V, Cremers S. et al. Potential pathophysiological mechanisms in osteonecrosis of the jaw. Annals of the New York Academy of Sciences 2011; 1218: 62-79.
  • 28 Lewiecki EM, Bilezikian JP. Denosumab for the treatment of osteoporosis and cancer-related conditions. Clinical pharmacology and therapeutics 2012; 91: 123-133.
  • 29 Liang S, Hosur KB, Domon H, Hajishengallis G. Periodontal inflammation and bone loss in aged mice. Journal of periodontal research 2010; 45: 574-578.
  • 30 McLeod NM, Brennan PA, Ruggiero SL. Bisphosphonate osteonecrosis of the jaw: a historical and contemporary review. The surgeon 2012; 10: 36-42.
  • 31 Nakashima et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nature Medicine 2011; 17: 1231-1234.
  • 32 Nancollas GH, Tang R, Phipps RJ. et al. Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 2006; 38: 617-627.
  • 33 Olsen BR, Reginato AM, Wang W. Bone development. Annual review of cell and developmental biology 2000; 16: 191-220.
  • 34 Pazianas M. Osteonecrosis of the jaw and the role of macrophages. Journal of the National Cancer Institute 2011; 103: 232-240.
  • 35 Persson GR. Rheumatoid arthritis and periodontitis – inflammatory and infectious connections. Review of the Literature. J Oral Microbiol 2012; 4 DOI: doi: 10.3402/jom.v4i0.11829. Epub 2012 Feb 13.
  • 36 Pozzi S, Raje N. The role of bisphosphonates in multiple myeloma: mechanisms, side effects, and the future. The oncologist 2011; 16: 651-662.
  • 37 Rachner TD, Singh SK, Schoppet M. et al. Zoledronic acid induces apoptosis and changes the TRAIL/OPG ratio in breast cancer cells. Cancer letters 2010; 287: 109-116.
  • 38 Reddy S, Comai L. Lamin A, farnesylation and aging. Experimental cell research 2012; 318: 1-7.
  • 39 Rogers MJ, Crockett JC, Coxon FP, Monkkonen J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone 2011; 49: 34-41.
  • 40 Russell RG. Bisphosphonates: the first 40 years. Bone 2011; 49: 2-19.
  • 41 Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporosis international 2008; 19: 733-759.
  • 42 Seshasayee D, Wang H, Lee WP. et al. A novel in vivo role for osteoprotegerin ligand in activation of monocyte effector function and inflammatory response. The Journal of biological chemistry 2004; 279: 30202-30209.
  • 43 Sheridan BS, Lefrancois L. Regional and mucosal memory T cells. Nature immunology 2011; 12: 485-491.
  • 44 Stresing V, Fournier PG, Bellahcene A. et al. Nitrogencontaining bisphosphonates can inhibit angiogenesis in vivo without the involvement of farnesyl pyrophosphate synthase. Bone 2011; 48: 259-266.
  • 45 Wehrhan F, Hyckel P, Ries J. et al. Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biologyrelated unique features. Journal of translational medicine 2010; 8: 96.
  • 46 Yamamoto T, Kaizu C, Kawasaki T. et al. Macrophage colony-stimulating factor is indispensable for repopulation and differentiation of Kupffer cells but not for splenic red pulp macrophages in osteopetrotic (op/op) mice after macrophage depletion. Cell and tissue research 2008; 332: 245-256.
  • 47 Yu Y, Lieu S, Hu D. et al. Site specific effects of zoledronic acid during tibial and mandibular fracture repair. PloS one 2012; 7: e31771.
  • 48 Zhao G, Xu MJ, Zhao MM. et al. Activation of nuclear factor-kappa B accelerates vascular calcification by inhibiting ankylosis protein homolog expression. Kidney Int 2012; Jul 82 (01) 34-44 doi: 10.1038/ki.2012.40. Epub 2012 Mar 21.
  • 49 Ziebart T, Pabst A, Klein MO. et al. Bisphosphonates: restrictions for vasculogenesis and angiogenesis: inhibition of cell function of endothelial progenitor cells and mature endothelial cells in vitro. Clinical oral investigations 2011; 15: 105-111.