Subscribe to RSS
DOI: 10.1055/s-0037-1622572
Der Klimawandel – Wegbereiter für die Ausbreitung vektorübertragener Erkrankungen des Hundes?
Climate change – a pioneer for the expansion of canine vector-borne diseases?Publication History
Eingegangen:
20 September 2010
Akzeptiert nach Revision:
10 November 2010
Publication Date:
05 January 2018 (online)

Zusammenfassung
Vektorübertragene Erkrankungen gehören zu den wichtigsten globalen Krankheitsgefahren für Mensch und Tier. Der Klimawandel wird dabei immer wieder für die zunehmende Verbreitung parasitischer Akaridenund Insektenvektoren wie beispielsweise Zecken, Flöhe, Sandmücken und Mücken und ihrer Krankheitserreger (im Fall des Hundes sog. CVBD-Erreger [canine vector-borne diseases]) verantwortlich gemacht. Bislang liegen noch unzureichende Daten vor, die den Klimawandel als treibende Kraft für die Ausbreitung von Vektoren und Erkrankungen bestätigen, aber einiges deutet auf eine solche Entwicklung hin. Ökologische, demographische und sozioökonomische Faktoren (z. B. Tiertransporte/-reisen in und Tierexporte aus endemischen Regionen) spielen jedoch derzeit mindestens eine ebenso wichtige Rolle. Bei allen kontroversen Diskussionen über die Ursachen der Vektorund Erregerausbreitung bleibt festzuhalten, dass vorbeugende Maßnahmen immer eine Aufklärung des Hundebesitzers mit einschließen sollten. Dieser ist persönlich für die antiparasitäre Behandlung seines Tieres und für ein risikominderndes Verhalten, z. B. hinsichtlich der Mitnahme des Tieres auf Reisen, verantwortlich. Eine breit angelegte Vektorkontrolle beim Hund sollte durch den Einsatz repellierender und abtötender Parasitizide erfolgen, um zumindest das Risiko einer CVBD-Erregerübertragung vom Vektor auf den Wirt zu minimieren.
Summary
Vector-transmitted diseases are one of the major contributors to the global burden of disease in humans and animals. Climate change is consistently held responsible for the spread of parasitic acarid and insect vectors such as ticks, fleas, sand flies and mosquitoes, and their transmitted pathogens (in the case of the dog the so-called canine vector-borne diseases [CVBD]). Currently, there is only insufficient data available to prove whether climate change is a major driving force for vector and disease expansion, but the evidence is growing. Other reasons, such as ecological, demographic and socio-economic factors, e. g. pet travel into and pet import from endemic areas, also play a role in this development. Apart from all the controversial discussion of the factors leading to vector and disease expansion, preventative measures should include dog owners’ education as they are responsible for individual parasite protection as well as for the minimisation of adverse risk behaviour, e. g. regarding pet travel. Broad-spectrum vector control should be practised by using parasiticides that repel and kill blood feeders in order to minimize the risk of CVBD-pathogen transmission.
-
Literatur
- 1 Beugnet F, Marié JL. Emerging arthropod-borne diseases of companion animals in Europe. Vet Parasitol 2009; 163: 298-305.
- 2 Bourdeau P. Canine vector-borne diseases in France: information obtained from veterinary clinics in national surveys. Tagungsbd. 3. Canine VectorBorne Disease (CVBD) Symposium, Wiesbaden, Deutschland, 16.–19. April 2008; pp 78–84.
- 3 Ebert B, Fleischer B. Globale Erwärmung und Ausbreitung von Infektionskrankheiten. Bundesgesundheitsbl Gesundheitsforsch Gesundheitssch 2005; 48: 55-62.
- 4 Gale P, Brouwer A, Ramnial V, Kelly L, Kosmider R, Fooks AR, Snary EL. Assessing the impact of climate change on vector-borne viruses in the EU through the elicitation of expert opinion. Epidemiol Infect 2010; 138: 214-225.
- 5 Gerstengarbe FW, Werner PC. Climate development in the last century – global and regional. Int J Med Microbiol 2008; 298 (Suppl. 01) 5-11.
- 6 Gilbert L. Altitudinal patterns of tick and host abundance: a potential role for climate change in regulating tick-borne diseases?. Oecologia 2010; 162: 217-225.
- 7 Glass GE, Schwartz BS, Morgan III JM, Johnson DT, Noy PM, Israel E. Environmental risk factors for Lyme disease identified with geographic information systems. Am J Public Health 1995; 85: 944-948.
- 8 Gray JS, Dautel H, Estrada-Peña A, Kahl O, Lindgren E. Effects of climate change on ticks and tick-borne diseases in europe. Interdiscip Perspect Infect Dis 2009; Article ID 593232, 12 pages, doi:10.11552009/593232.
- 9 Harrus S, Baneth G. Drivers for the emergence and re-emergence of vectorborne protozoal and bacterial diseases. Int J Parasitol 2005; 35: 1309-1318.
- 10 Intergovernmental Panel on Climate Change (IPCC). Climate change 2001: The scientific basis. Summary for policymakers. Cambridge, GB: Cambridge University Press; 2001: 1-20.
- 11 Intergovernmental Panel on Climate Change (IPCC). Climate change 2007: Synthesis report. Summary for policymakers. Cambridge, GB: Cambridge University Press; 2007: 1-22.
- 12 Intergovernmental Panel on Climate Change (IPCC). Climate change 2007: Working group I report. The Physical science basis. Chapter 3: Observations: Surface and atmospheric climate change. Cambridge, GB: Cambridge University Press; 2007: 235-336.
- 13 Irwin PJ. Companion animal parasitology: a clinical perspective. Int J Parasitol 2002; 32: 581-593.
- 14 Killick-Kendrick R. The life cycle of Leishmania in the sandfly with special reference to the form infective to the vertebrate host. Ann Parasitol Hum Comp 1990; 65 (Suppl. 01) 37-42.
- 15 Knight DH, Lok JB. Seasonality of heartworm infection and implications for chemoprophylaxis. Clin Tech Small Anim Pract 1998; 13: 77-82.
- 16 Knülle W, Rudolph D. Humidity relationships and water balance of ticks. In: Physiology of Ticks. Obenchain FD, Galun R. eds. Oxford, GB: Pergamon Press; 1982: 43-70.
- 17 Korenberg EI, Kovalevskii YV. Main features of tick-borne encephalitis ecoepidemiology in Russia. Zentralbl Bakteriol 1999; 289: 525-539.
- 18 Kovats RS, Campbell-Lendrum DH, McMichael AJ, Woodward A, Cox JS. Early effects of climate change: do they include changes in vector-borne disease?. Philos Trans R Soc Lond B Biol Sci 2001; 356: 1057-1068.
- 19 Lees AD, Milne A. The seasonal and diurnal activities of individual sheep ticks (Ixodes ricinus L.). Parasitol 1951; 41: 189-208.
- 20 Lok JB, Knight DH. Laboratory verification of a seasonal heartworm model. In: Recent Advances in Heartworm Disease. Symposium ‘98, Am. Heartworm Soc. Seward RL. ed. Batavia, USA: 1998: 15-20.
- 21 Maroli M, Rossi L, Baldelli R, Capelli G, Ferroglio E, Genchi C, Gramiccia M, Mortarino M, Pietrobelli M, Gradoni L. The northward spread of leishmaniasis in Italy: evidence from retrospective and ongoing studies on the canine reservoir and phlebotomine vectors. Trop Med Int Health 2008; 13: 256-264.
- 22 Medlock JM, Barrass I, Kerrod E, Taylor MA, Leach S. Analysis of climatic predictions for extrinsic incubation of Dirofilaria in the United kingdom. Vector Borne Zoonotic Dis 2007; 07: 4-14.
- 23 Mellor PS, Leake CJ. Climatic and geographic influences on arboviral infections and vectors. Rev Sci Tech 2000; 19: 41-54.
- 24 Mettler M, Grimm F, Naucke TJ, Maasjost C, Deplazes P. Canine Leishmaniose in Mitteleuropa: retrospektive Umfrage und serologische Untersuchung importierter und reisebegleitender Hunde. Berl Münch Tierärztl Wochenschr 2005; 118: 37-44.
- 25 Molyneux DH, Killick-Kendrick R. Morphology, ultrastructure and life cycles. In: The Leishmaniasis in Biology and Medicine, Vol. 1. Peters W, Killick-Kendrick R. eds. London, GB: Academic Press; 1987: 121-176.
- 26 Mouchet J, Carnevale P. [Impact of changes in the environment on vectortransmitted diseases.] Sante. 1997; 07: 263-269.
- 27 Needham GR, Teel PD. Off-host physiological ecology of ixodid ticks. Ann Rev Entomol 1991; 36: 659-681.
- 28 Ogden NH, St-Onge L, Barker IK, Brazeau S, Bigras-Poulin M, Charron DF, Francis CM, Heagy A, Lindsay LR, Maarouf A, Michel P, Milord F, O’Callaghan CJ, Trudel L, Thompson RA. Risk maps for range expansion of the Lyme disease vector, Ixodes scapularis, in Canada now and with climate change. Int J Health Geogr. 2008 07. 24 doi:10.1186/1476–072X–7–24.
- 29 Patz JA, Reisen WK. Immunology, climate change and vector-borne diseases. Trends Immunol 2001; 22: 171-172.
- 30 Randolph SE. Evidence that climate change has caused ‘emergence’ of tickborne diseases in Europe?. Int J Med Microbiol 2004; 293 (Suppl. 37) 5-15.
- 31 Randolph SE. Tick-borne encephalitis incidence in Central and Eastern Europe: consequences of political transition. Microbes Infect 2008; 10: 209-216.
- 32 Randolph SE. To what extent has climate change contributed to the recent epidemiology of tick-borne diseases?. Vet Parasitol 2010; 167: 92-94.
- 33 Randolph SE, Storey K. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J Med Entomol 1999; 36: 741-748.
- 34 RKI Lyme-Borreliose: Zur Situation in den östlichen Bundesländern. Analyse der Meldedaten aus dem 5-Jahreszeitraum von 2002 bis 2006. Epidemiol Bull 2007; 38: 352-355.
- 35 Roeckner E, Jacob D. Der Klimawandel ist voll im Gange: Ein Überblick. In: Warnsignal Klima: Gesundheitsrisiken. Lozán JL, Graßl H, Jendritzky G, Karbe L, Reise K. Hrsg. Wissenschaftliche Auswertungen, Hamburg, 2008: 19-34.
- 36 Semenza JC, Menne B. Climate change and infectious diseases in Europe. Lancet Infect Dis 2009; 09: 365-375.
- 37 Slocombe JOD, Surgeoner GA, Srivastava B. Determination of heartworm transmission period and its use in diagnosis and control. Proc. Heartworm Symposium 1989, Am. Heartworm Soc., Washington D.C., USA 1989; 19–26.
- 38 Stark K, Niedrig M, Biederbick W, Merkert H, Hacker J. Die Auswirkungen des Klimawandels. Welche neuen Infektionskrankheiten und gesundheitlichen Probleme sind zu erwarten? Bundesgesundheitsbl Gesundheitsforsch Gesundheitssch 2009; 52: 699-714.
- 39 Svobodova V, Misonova P. The potential risk of Dirofilaria immitis becoming established in the Czech Republic by imported dogs. Vet Parasitol 2005; 128: 137-40.
- 40 Teske E, van Knapen F, Beijer EG, Slappendel RJ. Risk of infection with Leishmania spp. in the canine population in the Netherlands. Acta Vet Scand 2002; 43: 195-201.
- 41 Tyndall Centre. Key8 for G8. Tyndall Centre for Climate Change Research 2005