Nuklearmedizin 1973; 12(02): 163-168
DOI: 10.1055/s-0038-1624818
Originalarbeiten — Original Articles — Travaux Originaux
Schattauer GmbH

11C Distribution in Dogs Visualized In Situ after Intravenous 11C-Cyanide in High Specific Activity[***]

La distribution du 11C dans des chiens 11C-Verteilung bei Hunden
W. G. Myers***
1   Reprint request to: Prof. Dr. W. G. Myers, Department of Radiology, Ohio State University Hospital, 410 West 10th Avenue, Columbus, Ohio/USA 43210.
,
J. F. Lamb
1   Reprint request to: Prof. Dr. W. G. Myers, Department of Radiology, Ohio State University Hospital, 410 West 10th Avenue, Columbus, Ohio/USA 43210.
,
R. W. James****
1   Reprint request to: Prof. Dr. W. G. Myers, Department of Radiology, Ohio State University Hospital, 410 West 10th Avenue, Columbus, Ohio/USA 43210.
,
H. S. Winchell
1   Reprint request to: Prof. Dr. W. G. Myers, Department of Radiology, Ohio State University Hospital, 410 West 10th Avenue, Columbus, Ohio/USA 43210.
› Author Affiliations
Further Information

Publication History

Received:04 April 1973

Publication Date:
22 January 2018 (online)

Le cyanide-11C peut être produit continuellement en centaines de milicuries par heure en irradiant un gaz composé de 99% d’azote et 1% d’hydrogène avec des protons de 15 MeV.

On a démontré in situ que la carbon 11 est fixé régulièrement dans le coeur, le fond de l’estomac et les reins de chiens en anesthésie profonde de pentobarbital entre quelques minutes et une heure après injection intraveineuse de 11C-cyanide à activité spécifique élevée. En plus le carbon 11 est fixé dans les parotides et les testicules de quelques chiens mais pas régulièrement.

On developpe une hypothèse qui attribue ces résultats à la formation de H11Cferricytochrome- oxidase dans les organes qui montrent une fixation élevée du 11C.

Summary

11C-cyanide is produced automatically and continuously, at the rate of hundreds of millicuries per hour, by bombarding gas targets consisting of 99% nitrogen and 1% hydrogen, with 15-MeV protons.

Carbon-11 is demonstrated in situ to localize regularly in the heart, fundus of the stomach, and the kidneys of dogs under deep pentobarbital anesthesia, within minutes to an hour after intravenously injecting 11C-cyanide in high specific activity. Additionally, Carbon-11 accumulates similarly in the parotid glands or in the testes of some of the dogs, but these are inconstant findings.

An hypothesis is developed that attributes the results to the formation of H11CN-ferricytochrome oxidase in the organs and tissues where high Carbon-11 uptake occurs.

Beobachtungen in Situ nach intravenöser Verabreichung von 11C-2yanid von hoher spezifischer Aktivität

11C-2yanid kann automatisch und kontinuierlich zu Hunderten von Millicuries pro Stunde durch Beschuß von Gas, das aus 99% Stickstoff und l% Wasserstoff besteht, mit 15-MeV Protonen erzeugt werden.

Es kann in Situ nachgewiesen werden, daß 11C regelmäßig im Herzen, Magenfundus und in den Nieren von Hunden in tiefer Barbituratnarkose aufgenommen wird, und zwar innerhalb Minuten bis zu einer Stunde nach intravenöser Injektion von 11C-Zyanid von hoher spezifischer Aktivität. Zusätzlich wird 11C in ähnlicher Weise auch in der Parotis und in den Hoden eines Teiles der Hunde gespeichert, doch ist dies nicht immer der Fall.

Es wird eine Hypothese entwickelt, die diese Ergebnisse der Bildung von H11CN-Eisenzytochromoxidase in jenen Organen zuschreibt, die eine hohe 11CSpeicherung aufweisen.

* Donner Laboratory, University of California at Berkeley and Medi-Physics, Inc., Emeryville, California.


** This work was supported under AEC contract W-7405-ENG-48 and At(04-3)-849.


*** visi ing Professor of Nuclear Medicine from the Department of Radiology at The Ohio State University, Columbus, Ohio.


**** National Institutes of Health Trainee in Nuclear Medicine.


 
  • References

  • 1 Lamb J. H. S. Winchell: Direct cyclotron production of 11CN- . J. Nucl. Med. 1970; 11: 339-340.
  • 2 Lamb J. F, James R. W. H. S. Winchell: Recoil synthesis of high specific activity 11C-cyanide. Int. J. Appl. Rad. & Isotopes. 1971; 22: 475-479.
  • 3 Ball E. G, Cooper O. The reaction of cytochrome oxidase with cyanide. J. Biol. Chem. 1952; 198: 629-638.
  • 4 Gerkin R. E. Personal communication to W. G. Myers 1970
  • 5 Myers W. G, Lamb J. F, James R. W, Winchell H. S. Visualization in situ of 11C distribution in dogs after intravenous “radioindicator” 11C-cyanide. J. Nucl. Med. 1970; 11: 637-638.
  • 6 Gettier A. O, Baine J. O. The toxicology of cyanide. Amer. J. Med. Sei. 1938; 195: 182-198.
  • 7 Boxer G. E, Rickards J. C. Studies on the metabolism of the carbon of cyanide and thiocyanate. Arch. Biochem. Biophys. 1952; 39: 7-25.
  • 8 Hevesy G. Radioactive Indicators. Interscience Publishers; New York: 1948
  • 9 Drill's Pharmacology in Medicine. DiPalma J. R. Editor. 3rd Edition. McGraw- Hill Book Company; New York: 1965
  • 10 White A, Handler P, Smith E. L. Principles of Biochemistry. 4th Edition.. McGraw-Hill Book Company; New York: 1968
  • 11 The Parmacological Basis of Therapeutics. Goodman L. S, Gilman A. Editors. 4th Edition.. MacMillan; New York: 1970
  • 12 Sollmann T. Pharmacology and its Applications to Therapeutics and Toxicology. 8th Edition. Saunders; Philadelphia: 1957
  • 13 Anger H. O. Gamma-ray and positron scintillation camera. Nucleonics 1963; 21 (010) 56-59.
  • 14 Anger H. O. Radioisotope cameras, Chap 19. 485-552. Instrumentation in Nuclear Medicine. Hine G. J. Editor. Academic Press; New York: 1967
  • 15 Anger H. O. Whole-body scanner mark II. J . Nucl. Med. 1966; 7: 331-332.
  • 16 Ache H. J, Wolf A. P. Reactions of energetic carbon atoms with nitrogen molecules. Radiochim. Acta 1966; 6: 32-39.
  • 17 Keilin D. The History of Cell Respiration and Cytochrome. p 206 University Press; Cambridge: 1966
  • 18 Birgele E. Activity of cytochrome oxidase in abomasum mucosa during ontogenesis of the cow. Probl. Funkts. Morfol. 1969; 4: 51-62. Chemical Abstracts 72 130020 d 1970;
  • 19 Margoliash E, Schejter A. Cytochrome c. Advan. Protein. Chem. 1966; 21: 113-286.
  • 20 Keilin D. On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proc. Royal. Soc. (London), B 1925; 98: 312-339.
  • 21 Hess H. H, Pope A. Ultramicrospectrophotometric determination of cytochrome oxidase for quantitative histochemistry. J . Biol. Chem. 1953; 204: 295-306.
  • 22 Mann T. Studies on the metabolism of semen. I. General aspects, occurrence and distribution of cytochrome, certain enzymes and coenzymes. Biochem. J. 1945; 39: 451-458.
  • 23 Korr I. M. The relation between tissue metabolism and physiological activity. Year. Book. Am. Phil. Soc. 1945; 182-185.
  • 24 Albaum H. G, Tepperman J, Bodansky O. A spectrophotometric study of the competition of methemoglobin and cytochrome oxidase for cyanide in vitro. J. Biol. Chem. 1946; 163: 641-647.
  • 25 Kamen M. D. Short-lived radioactive carbon (C11), Chapter VII. 148-167. Radioactive Tracers in Biology. Academic Press; New York: 1947
  • 26 Kidder G. WIII. Cytochrome c as site of action of thiocyanate in frog gastric mucosa. Am. J . Physiol. 1970; 219: 641-648.