Nuklearmedizin 2010; 49(S 01): S11-S15
DOI: 10.1055/s-0038-1626533
Übersichtsarbeit
Schattauer GmbH

Nuklearmedizin trifft Strahlentherapie

Sicht der RadioonkologenNuclear medicine meets radiation therapyThe radiooncologist's view
C. Schütze
1   Klinik und Poliklinik für Strahlentherapie und Radioonkologie und OncoRay – National Center for Radiation Research in Oncology, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, TU Dresden
,
M. Krause
1   Klinik und Poliklinik für Strahlentherapie und Radioonkologie und OncoRay – National Center for Radiation Research in Oncology, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, TU Dresden
,
A. Yaromina
1   Klinik und Poliklinik für Strahlentherapie und Radioonkologie und OncoRay – National Center for Radiation Research in Oncology, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, TU Dresden
,
D. Zips
1   Klinik und Poliklinik für Strahlentherapie und Radioonkologie und OncoRay – National Center for Radiation Research in Oncology, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, TU Dresden
,
M. Baumann
1   Klinik und Poliklinik für Strahlentherapie und Radioonkologie und OncoRay – National Center for Radiation Research in Oncology, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, TU Dresden
› Author Affiliations
Further Information

Publication History

Eingegangen: 30 September 2010

angenommen: 01 October 2010

Publication Date:
24 January 2018 (online)

Summary

Radiobiological and cell biological knowledge is increasingly used to further improve local tumour control or to reduce normal tissue damage after radiotherapy. Important research areas are evolving which need to be addressed jointly by nuclear medicine and radiation oncology. For this differences of the biological distribution of diagnostic and therapeutic nuclides compared with the more homogenous dose-distribution of external beam radiotherapy have to be taken into consideration. Examples for interdisciplinary biology-based cancer research in radiation oncology and nuclear medicine include bioimaging of radiobiological parameters characterizing radioresistance, bioimage-guided adaptive radiotherapy, and the combination of radiotherapy with molecular targeted drugs.

Zusammenfassung

Die Radioonkologie nutzt zunehmend strahlenbiologische und molekularbiologische Erkenntnisse um die lokale Tumorkontrolle weiter zu verbessern und Nebenwirkungen zu reduzieren. Hierbei ergeben sich wichtige Forschungsfelder, die gemeinsam mit der Nuklearmedizin bearbeitet werden. Dabei müssen grundlegende Unterschiede in der biologischen Verteilung von diagnostischen und therapeutischen Nukliden im Vergleich zur homogeneren Dosisverteilung einer externen Bestrahlung beachtet werden. Beispiele für die interdisziplinäre biologisch basierte Krebsforschung von Radioonkologie und Nuklearmedizin sind unter anderem die biologische Bildgebung strahlenbiologischer Resistenzfaktoren, die hierauf basierende biologisch adaptierte Strahlentherapie und die Kombination von Strahlentherapie und molekular wirksamen Substanzen.

 
  • Literatur

  • 1 Ang K, Berkey BA, Tu X. et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Research 2002; 62: 7350-7356.
  • 2 Baumann M, Krause M. Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results. Radiother Oncol 2004; 72: 257-266.
  • 3 Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 2008; 8: 545-554.
  • 4 Baumann M, Krause M, Thames H. et al. Cancer stem cells and radiotherapy. Int J Radiat Biol 2009; 85: 391-402.
  • 5 Baumann M, Krause M, Zips D. et al. Selective inhibition of the epidermal growth factor tyrosine kinase by BIBX1382BS improves growth delay but not local control after fractionated irradiation in human FaDu squamous cell carcinoma in nude mice. Int J Radiat Biol 2003; 79: 547-559.
  • 6 Bentzen SM, Atasoy BM, Daley FM. et al. Epidermal growth factor receptor expression in pretreatment biopsies from head and neck squamous cell carcinoma as a predictive factor for a benefit from accelerated radiation therapy in a randomized controlled trial. J Clin Oncol 2005; 23: 5560-5567.
  • 7 Chapman JD, Engelhardt EL, Stobbe CC, Schneider RF, Hanks GE. Measuring hypoxia and predicting tumor radioresistance with nuclear medicine assays. Radiother Oncol 1998; 46: 229-237.
  • 8 Chua DT, Nicholls JM, Sham JS, Au GK. Prognostic value of epidermal growth factor receptor expression in patients with advanced stage nasopharyngeal carcinoma treated with induction chemotherapy and radiotherapy. Int J Radiat Oncol Biol Phys 2004; 59: 11-20.
  • 9 Debus J, G. K Hug E. Hadronentherapie. In: Bamberg M, Molls M, Sack H. (Hrsg) Radioonkologie Band I. München_ Zuckerschwerdt; 2009: 95-108.
  • 10 Eriksen JG, Buffa FM, Alsner J. et al. Molecular profiles as predictive marker for the effect of overall treatment time of radiotherapy in supraglottic larynx squamous cell carcinomas. Radiother Oncol 2004; 72: 275-282.
  • 11 Greinke R, Brüchner K, Bergmann R. et al. Tierexperimentelle Untersuchungen zur [18F]Fluoromisonidazol-Aufnahme und dessen Verteilung in FaDu-Tumoren in Abhängigkeit zu pathophysiologischen Parametern. Proceedings Experimentelle Strahlentherapie und Klinische Strahlenbiologie 2010; 19: 98-102.
  • 12 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57-70.
  • 13 Holthusen H. Erfahrungen über die Verträglichkeitsgrenze für Röntgenstrahlen und deren Nutzanwendung zur Verhütung von Schäden. Strahlenther 1936; 57: 254-269.
  • 14 Horsman MR, Wouters BG, Joiner M, Overgaard J. The oxygen effect and fractionated radiotherapy. In: Joiner M, Van der Kogel AJ. (eds) Basic clinical radiobiology. London: HodderArnold; 2009
  • 15 Joiner M. Linear energy transfer and relative biological effectiveness. In: Joiner M, Van der Kogel AJ. (eds) Basic Clinical Radiobiology. London: Hodder Arnold; 2009
  • 16 Kotzerke J, Oehme L, Lindner O, Hellwig D. Arbeitsausschuss PET der DGN. Positron emission tomography 2008 in Germany – results of the query and current status. Nuklearmedizin 2010; 49: 58-64.
  • 17 Lewis JS, Welch MJ. PET imaging of hypoxia. Q J Nucl Med 2001; 45: 183-188.
  • 18 MacPhail SH, Banath JP, Yu TY. et al. Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol 2003; 79: 351-358.
  • 19 Menegakis A, Yaromina A, Eicheler W. et al. Prediction of clonogenic cell survival curves based on the number of residual DNA double strand breaks measured by gammaH2AX staining. Int J Radiat Biol 2009; 85: 1032-1041.
  • 20 Nestle U, Kotzerke J. PTV – PET traced volume?. Nuklearmedizin 2009; 48: 127-129.
  • 21 Nordsmark MBS, Rudat V, Brizel D. et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 2005; 77: 18-24.
  • 22 Nunn A, Linder K, Strauss HW. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 1995; 22: 265-280.
  • 23 Olive PL, Banath JP. Phosphorylation of histone H2AX as a measure of radiosensitivity. Int J Radiat Oncol Biol Phys 2004; 58: 331-335.
  • 24 Overgaard J, Horsman MR. Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Sem Radiat Oncol 1996; 6: 10-21.
  • 25 Rasey JS, Grunbaum Z, Magee S. et al. Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res 1987; 111: 292-304.
  • 26 Schütze C, Bergmann R, Mosch B. et al. Pre-treatment FMISO hypoxic volume is a significant prognostic factor for local control after irradiation of FaDu HNSCC xenografts. 27th Annual Meeting of the European Society for Therapeutic Radiology and Oncology (ESTRO). Goteborg, Schweden 2008; 88: S102.
  • 27 Thorwarth D, Eschmann SM, Paulsen F, Alber M. Hypoxia dose painting by numbers: a planning study. Int J Radiat Oncol Biol Phys 2007; 68: 291-300.
  • 28 Troost EG, Laverman P, Philippens ME. et al. Correlation of [18F]FMISO autoradiography and pimonodazole immunohistochemistry in human head and neck carcinoma xenografts. Eur J Nucl Med Mol Imaging 2008; 35: 1803-1811; Eur J Nucl Med Mol Imaging 2009; 36: 331.
  • 29 Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989; 49: 6449-6465.
  • 30 Weinmann M, Belka C, Plasswilm L. Tumour hypoxia: impact on biology, prognosis and treatment of solid malignant tumours. Onkologie 2004; 27: 83-90.
  • 31 Wendisch M, Drechsel J, Freudenberg R. et al. Cellular damage in vitro. Nuklearmedizin 2009; 48: 208-214.
  • 32 Wendisch M, Freudenberg R, Drechsel J. et al. 99mTc reduces clonogenic survival after intracellular uptake in NIS-positive cells in vitro more than 131I. Nuklearmedizin 2010; 49: 154-160.
  • 33 Yaromina A, Holscher T, Eicheler W. et al. Does heterogeneity of pimonidazole labelling correspond to the heterogeneity of radiation-response of FaDu human squamous cell carcinoma?. Radiother Oncol 2005; 76: 206-212.
  • 34 Yaromina A, Thames H, Zhou X. et al. Radiobiological hypoxia, histological parameters of tumour microenvironment and local tumour control after fractionated irradiation. Radiother Oncol 2010; 96: 116-122.
  • 35 Yaromina A, Zips D, Thames HD. et al. Pimonidazole labelling and response to fractionated irradiation of five human squamous cell carcinoma (hSCC) cell lines in nude mice: The need for a multivariate approach in biomarker studies. Radiother Oncol 2006; 81: 122-129.