Nervenheilkunde 2009; 28(10): 733-738
DOI: 10.1055/s-0038-1627141
Nuklearmedizinische Bildgebung
Schattauer GmbH

Schmerzforschung mit der Positronen-Emissions-Tomografie

Pain research with positron emission tomography
T. Sprenger
1   Department of Neurology, Headache Group, University of California, San Francisco
2   Neurologische Klinik und Poliklinik, TU München
,
T.R. Tölle
2   Neurologische Klinik und Poliklinik, TU München
,
H. Boecker
3   FE Klinische Funktionelle Neurobildgebung, Radiologische Universitätsklinik, Friedrich-Wilhelms- Universität Bonn
,
P. Bartenstein
4   Klinik und Poliklinik für Nuklearmedizin, LMU München
› Author Affiliations
Further Information

Publication History

Eingegangen am: 06 June 2009

angenommen am: 09 June 2009

Publication Date:
19 January 2018 (online)

Zusammenfassung

Im Rahmen der Schmerzforschung mit der Positronen- Emissions-Tomografie (PET) sind in den letzten Jahren zahlreiche wegweisende Arbeiten entstanden, welche unser heutiges Verständnis der zerebralen Schmerzverarbeitung und Schmerzmodulation wesentlich geprägt haben. In dieser Übersichtsarbeit fassen wir wichtige PET-Befunde zur Physiologie der Schmerzverarbeitung und des Opioidsystems sowie zur Pathophysiologie von ausgewählten Schmerzsyndromen zusammen und erörtern welche zukünftigen Entwicklungen zu erwarten sind.

Summary

Studies applying positron emission tomography (PET) have tremendously advanced our understanding of cerebral pain processing as well as pain modulation in the past. This article summarizes key findings on the physiology of cerebral pain processing and the opioid system as well as the pathophysiology of selected clinical pain conditions. We also outline the future potential of PET in pain research.

 
  • Literatur

  • 1 Sprenger T. et al. What to learn from in vivo opioidergic brain imaging?. Eur J Pain 2005; 9: 117-21.
  • 2 Duncan JS. Positron emission tomography receptor studies. Adv Neurol 1999; 79: 893-9.
  • 3 Terry G. et al. Positron emission tomography imaging using an inverse agonist radioligand to assess cannabinoid CB1 receptors in rodents. Neuroimage 2008; 41: 690-8.
  • 4 Tolle TR. et al. Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 1999; 45: 40-7.
  • 5 Schreckenberger M. et al. The unpleasantness of tonic pain is encoded by the insular cortex. Neurology 2005; 64: 1175-83.
  • 6 Wagner KJ. et al. Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans: a positron emission tomography study. Anesthesiology 2001; 94: 732-9.
  • 7 Petrovic P. et al. Placebo and opioid analgesia – imaging a shared neuronal network. Science 2002; 295: 1737-40.
  • 8 Wagner KJ. et al. Imaging human cerebral pain modulation by dose-dependent opioid analgesia: a positron emission tomography activation study using remifentanil. Anesthesiology 2007; 106: 548-56.
  • 9 Bingel U. et al. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 2006; 120: 8-15.
  • 10 May A. et al. Hypothalamic activation in cluster headache attacks. Lancet 1998; 352: 275-8.
  • 11 Matharu MS. et al. Posterior hypothalamic activation in paroxysmal hemicrania. Ann Neurol 2006; 59: 535-45.
  • 12 Sprenger T. et al. Specific hypothalamic activation during a spontaneous cluster headache attack. Neurology 2004; 62: 516-7.
  • 13 Weiller C. et al. Brain stem activation in spontaneous human migraine attacks. Nat Med 1995; 1: 658-60.
  • 14 Afridi SK. et al. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain 2005; 128: 932-9.
  • 15 Sanchez del Rio M, Alvarez Linera J. Functional neuroimaging of headaches. Lancet Neurol 2004; 3: 645-51.
  • 16 Denuelle M. et al. Hypothalamic activation in spontaneous migraine attacks. Headache 2007; 47: 1418-26.
  • 17 Sprenger T. et al. Altered metabolism in frontal brain circuits in cluster headache. Cephalalgia 2007; 27: 1033-42.
  • 18 Tashiro M. et al. Hypometabolism in the limbic system of cancer patients observed by positron emission tomography. Psychooncology 1999; 8: 283-6.
  • 19 Jones AK. et al. In vivo distribution of opioid receptors in man in relation to the cortical projections of the medial and lateral pain systems measured with positron emission tomography. Neurosci Lett 1991; 126: 25-8.
  • 20 Baumgartner U. et al. High opiate receptor binding potential in the human lateral pain system. Neuroimage 2006; 30: 692-9.
  • 21 Frost JJ. et al. Comparison of [11C]diprenorphine and [11C]carfentanil binding to opiate receptors in humans by positron emission tomography. J Cereb Blood Flow Metab 1990; 10: 484-92.
  • 22 Zubieta JK, Dannals RF, Frost JJ. Gender and age influences on human brain mu-opioid receptor binding measured by PET. Am J Psychiatry 1999; 156: 842-8.
  • 23 Henriksen G. et al. Gender dependent rate of metabolism of the opioid receptor-PET ligand [18F]fluoroethyldiprenorphine. Nuklearmedizin 2006; 45: 197-200.
  • 24 Zubieta JK. et al. COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science 2003; 299: 1240-3.
  • 25 Zubieta JK. et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 2001; 293: 311-5.
  • 26 Bencherif B. et al. Pain activation of human supraspinal opioid pathways as demonstrated by [11C]-carfentanil and positron emission tomography (PET). Pain 2002; 99: 589-98.
  • 27 Sprenger T. et al. Opioidergic activation in the medial pain system after heat pain. Pain 2006; 122: 63-7.
  • 28 Zubieta JK. et al. mu-opioid receptor-mediated antinociceptive responses differ in men and women. J Neurosci 2002; 22: 5100-7.
  • 29 Wager TD, Scott DJ, Zubieta JK. Placebo effects on human mu-opioid activity during pain. Proc Natl Acad Sci U S A 2007; 104: 11056-61.
  • 30 Scott DJ. et al. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch Gen Psychiatry 2008; 65: 220-31.
  • 31 Hagelberg N. et al. Mu-receptor agonism with alfentanil increases striatal dopamine D2 receptor binding in man. Synapse 2002; 45: 25-30.
  • 32 Willoch F. et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 2004; 108: 213-20.
  • 33 Jones AK. et al. Measurement of changes in opioid receptor binding in vivo during trigeminal neuralgic pain using [11C] diprenorphine and positron emission tomography. J Cereb Blood Flow Metab 1999; 19: 803-8.
  • 34 Jones AK. et al. Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br J Rheumatol 1994; 33: 909-16.
  • 35 Laruelle M. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 2000; 20: 423-51.
  • 36 Maarrawi J. et al. Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 2007; 127: 183-94.
  • 37 Sprenger T. et al. Opioidergic changes in the pineal gland and hypothalamus in cluster headache: a ligand PET study. Neurology 2006; 66: 1108-10.
  • 38 von Spiczak S. et al. The role of opioids in restless legs syndrome: an [11C]diprenorphine PET study. Brain 2005; 128: 906-17.
  • 39 Maarrawi J. et al. Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 2007; 69: 827-34.
  • 40 Boecker H. et al. The runner’s high: opioidergic mechanisms in the human brain. Cereb Cortex 2008; 18: 2523-31.
  • 41 Boecker H. et al. Positron emission tomography ligand activation studies in the sports sciences: measuring neurochemistry in vivo. Methods 2008; 45: 307-18.
  • 42 Schreckenberger M. et al. Opioid receptor PET reveals the psychobiologic correlates of reward processing. J Nucl Med 2008; 49: 1257-61.