Nervenheilkunde 2011; 30(05): 313-319
DOI: 10.1055/s-0038-1627810
Bipolare Störungen
Schattauer GmbH

Bildgebung und Genetik bipolarer Erkrankungen

Article in several languages: deutsch | English
F. Bermpohl
1   Klinik für Psychiatrie und Psychotherapie, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin, Berlin School of Mind and Brain
,
A. Heinz
1   Klinik für Psychiatrie und Psychotherapie, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin, Berlin School of Mind and Brain
,
H. Walter
1   Klinik für Psychiatrie und Psychotherapie, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin, Berlin School of Mind and Brain
› Author Affiliations
Further Information

Publication History

Eingegangen am: 01 February 2011

angenommen am: 17 February 2011

Publication Date:
23 January 2018 (online)

Zusammenfassung

Trotz der hohen Prävelanz und Morbidität der bipolaren Störung ist die zugrunde liegende Neurobiologie wenig verstanden. Der vorliegende Übersichtsartikel bietet einen Einblick in neue bildgebende und genetische Untersuchungen der Störung. Dazu referieren wir Befunde aus strukturellen und funktionellen Magnetresonanztomografiestudien, Positronen-Emissionstomografiestudien, genomweiten Assoziationsstudien und Imaging-Genetics-Studien. In der Zusammenschau legen die Befunde nahe, dass bei der bipolaren Störung eine Dysfunktion des Emotionen verarbeitenden neuralen Netzwerks besteht. Ein hyperaktives ventrales Emotionssystem wird mit affektiven Symptomen, wie gehobener oder gedrückter Stimmung, in Zusammenhang gebracht. Ein hypoaktives dorsales Emotionssystem könnte Störungen der exekutiven Funktionen und der Emotionsregulation erklären. Die Studien dienen einem besseren Verständnis der Pathophysiologie der bipolaren Störung. Perspektivisch könnten sie zudem einen Beitrag leisten zu Früherkennung, Sicherung der Diagnose, Klassifizierung von Subtypen, Individualisierung der Behandlung, Prädiktion von Therapieverläufen sowie Entwicklung neuer Therapieformen.

 
  • Literatur

  • 1 Ketter TA. Diagnostic features, prevalence, and impact of bipolar disorder. J Clin Psychiatry 2010; 71: e14.
  • 2 Murray CJL, Lopez AD. The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to. 2020. Cambridge, MA: Harvard University Press; 1996
  • 3 Belmaker RH. Bipolar disorder. N Engl J Med 2004; 351: 476-486.
  • 4 Kempton MJ. et al. Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Arch Gen Psychiatry 2008; 65: 1017-32.
  • 5 Langan C, McDonald C. Neurobiological trait abnormalities in bipolar disorder. Mol Psychiatry 2009; 14: 833-846.
  • 6 Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59: 1116-1127.
  • 7 Ongur D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 1998; 95: 13290-13295.
  • 8 Hallahan B. et al. Structural magnetic resonance Iiaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data. Biol Psychiatry 2011; 69: 326-335.
  • 9 Moore GJ. et al. Lithium-induced increase in human brain grey matter. Lancet 2000; 356: 1241-1242.
  • 10 Savitz J, Drevets WC. Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev 2009; 33: 699-771.
  • 11 Pfeifer JC. et al. Meta-analysis of amygdala volumes in children and adolescents with bipolar disorder. J Am Acad Child Adolesc Psychiatry 2008; 47: 1289-98.
  • 12 Usher J. et al. Correlation between amygdala volume and age in bipolar disorder – a systematic review and meta-analysis of structural MRI studies. Psychiatry Res 2010; 182: 1-8.
  • 13 Benedetti F. et al. Disruption of white matter integrity in bipolar depression as a possible structural marker of illness. Biol Psychiatry 2011; 69: 309-317.
  • 14 Drevets WC. et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386: 824-827.
  • 15 Blumberg HP. et al. Rostral and orbital prefrontal cortex dysfunction in the manic state of bipolar disorder. Am J Psychiatry 1999; 156: 1986-1988.
  • 16 Schloesser RJ. et al. Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 2008; 33: 110-33.
  • 17 Martinowich K, Schloesser RJ, Manji HK. Bipolar disorder: from genes to behavior pathways. J Clin Invest 2009; 119: 726-736.
  • 18 Drevets WC. et al. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999; 46: 1375-1387.
  • 19 Reimold M. et al. Anxiety is associated with reduced central serotonin transporter availability in unmedicated patients with unipolar major depression: a [11C]DASB PET study. Mol Psychiatry 2008; 13: 606-613.
  • 20 Reimold M. et al. Central serotonin transporter levels are associated with stress hormone response and anxiety. Psychopharmacology (Berl) 2011; 21 2-3 563-572.
  • 21 Yatham LN. et al. Brain serotonin-2 receptors in acute mania. Br J Psychiatry 2010; 196: 47-51.
  • 22 Bermpohl F. et al. A preliminary study of increased amygdala activation to positive affective stimuli in mania. Bipolar Disord 2009; 11: 70-75.
  • 23 Abler B, Erk S, Herwig U, Walter H. Anticipation of aversive stimuli activates extended amygdala in unipolar depression. J Psychiatr Res 2007; 41: 511-522.
  • 24 Fu CH. et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry 2004; 61: 877-889.
  • 25 Almeida JR. et al. Elevated amygdala activity to sad facial expressions: a state marker of bipolar but not unipolar depression. Biol Psychiatry 2010; 67: 414-21.
  • 26 Leppanen JM. Emotional information processing in mood disorders: a review of behavioral and neuroimaging findings. Curr Opin Psychiatry 2006; 19: 34-39.
  • 27 Bermpohl F. et al. Attentional modulation of emotional stimulus processing in patients with major depression--alterations in prefrontal cortical regions. Neurosci Lett 2009; 463: 108-113.
  • 28 Strakowski SM. et al. Functional magnetic resonance imaging brain activation in bipolar mania: Evidence for disruption of the ventrolateral prefrontal-amygdala emotional pathway. Biol Psychiatry 2011; 69: 381-388.
  • 29 Moses-Kolko EL et al.. Abnormally reduced dorsomedial prefrontal cortical activity and effective connectivity with amygdala in response to negative emotional faces in postpartum depression. Am J Psychiatry 2010; 167: 1373-80.
  • 30 Wang F. et al. Functional and structural connectivity between the perigenual anterior cingulate and amygdala in bipolar disorder. Biol Psychiatry 2009; 66: 516-521.
  • 31 Erk S. et al. Acute and sustained effects of cognitive emotion regulation in major depression. J Neurosci 2010; 30: 15726-15734.
  • 32 Friedel E. et al. 5-HTT genotype effect on prefrontal-amygdala coupling differs between major depression and controls. Psychopharmacology (Berl) 2009; 205: 261-271.
  • 33 Abler B. et al. Abnormal reward system activation in mania. Neuropsychopharmacology 2008; 33: 2217-27.
  • 34 Bermpohl F. et al. Altered representation of expected value in the orbitofrontal cortex in mania. Hum Brain Mapp 2010; 31: 958-969.
  • 35 Diekhof EK, Falkai P, Gruber O. Functional neuroimaging of reward processing and decision-making: a review of aberrant motivational and affective processing in addiction and mood disorders. Brain Res Rev 2008; 59: 164-184.
  • 36 Fleck DE et al.. Functional MRI of sustained attention in bipolar mania. Mol Psychiatry. 2011 Epub ahed of print..
  • 37 Lagopoulos J, Ivanovski B, Malhi GS. An event-related functional MRI study of working memory in euthymic bipolar disorder. J Psychiatry Neurosci 2007; 32: 174-184.
  • 38 Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry 2008; 13: 829.
  • 39 Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology 2010; 35: 192-216.
  • 40 Strakowski SM, Delbello MP, Adler CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry 2005; 10: 105-116.
  • 41 Ochsner KN, Gross JJ. The cognitive control of emotion. Trends Cogn Sci 2005; 09: 242-249.
  • 42 Bermpohl F. et al. Attentional modulation of emotional stimulus processing: an fMRI study using emotional expectancy. Hum Brain Mapp 2006; 27: 662-677.
  • 43 Erk S, Kleczar A, Walter H. Valence-specific regulation effects in a working memory task with emotional context. Neuroimage 2007; 37: 623-632.
  • 44 Erk S, von Kalckreuth A, Walter H. Neural long-term effects of emotion regulation on episodic memory processes. Neuropsychologia 2010; 48: 989-996.
  • 45 Erk S, Abler B, Walter H. Cognitive modulation of emotion anticipation. Eur J Neurosci 2006; 24: 1227-1236.
  • 46 Abler B. et al. Habitual emotion regulation strategies and depressive symptoms in healthy subjects predict fMRI brain activation patterns related to major depression. Psychiatry Res 2010; 183: 105-113.
  • 47 Heinz A. et al. Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nat Neurosci 2005; 08: 20-21.
  • 48 Heinz A. et al. Serotonin transporter genotype (5-HTTLPR): effects of neutral and undefined conditions on amygdala activation. Biol Psychiatry 2007; 61: 1011-1014.
  • 49 Heinz A. et al. Brain activation elicited by affectively positive stimuli is associated with a lower risk of relapse in detoxified alcoholic subjects. Alcohol Clin Exp Res 2007; 31: 1138-1147.
  • 50 McGuffin P. et al. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry 2003; 60: 497-502.
  • 51 Baum AE. et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2008; 13: 197-207.
  • 52 Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007; 447: 661-678.
  • 53 Sklar P. et al. Whole-genome association study of bipolar disorder. Mol Psychiatry 2008; 13: 558-569.
  • 54 Ferreira MA. et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056-1058.
  • 55 Erk S. et al. Brain function in carriers of a genomewide supported bipolar disorder variant. Arch Gen Psychiatry 2010; 67: 803-811.
  • 56 O’Donovan MC. et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008; 40: 1053-1055.
  • 57 Esslinger C. et al. Neural mechanisms of a genomewide supported psychosis variant. Science 2009; 324: 605.
  • 58 Esslinger C. et al. Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. Neuroimage 2011; 54: 2514-2523.
  • 59 Puls I. et al. A model comparison of COMT effects on central processing of affective stimuli. Neuroimage 2009; 46: 683-691.
  • 60 Puls I. et al. Synergistic effects of the dopaminergic and glutamatergic system on hippocampal volume in alcohol-dependent patients. Biol Psychol 2008; 79: 126-136.
  • 61 Keener MT, Phillips ML. Neuroimaging in bipolar disorder: a critical review of current findings. Curr Psychiatry Rep 2007; 09: 512-520.
  • 62 Malhi GS, Lagopoulos J. Making sense of neuroimaging in psychiatry. Acta Psychiatr Scand 2008; 117: 100-117.
  • 63 Dougherty DD, Rauch SL. Brain correlates of antidepressant treatment outcome from neuroimaging studies in depression. Psychiatr Clin North Am 2007; 30: 91-103.
  • 64 Clark L, Chamberlain SR, Sahakian BJ. Neurocognitive mechanisms in depression: implications for treatment. Annu Rev Neurosci 2009; 32: 57-74.
  • 65 Adli M. et al. Response to lithium augmentation in depression is associated with the glycogen synthase kinase 3-beta-50T/C single nucleotide polymorphism. Biol Psychiatry 2007; 62: 1295-1302.
  • 66 Phillips ML, Vieta E. Identifying functional neuroimaging biomarkers of bipolar disorder: toward DSM-V. Schizophr Bull 2007; 33: 893-904.
  • 67 Lawrence NS. et al. Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiatry 2004; 55: 578-587.
  • 68 Brotman MA. et al. Amygdala activation during emotion processing of neutral faces in children with severe mood dysregulation versus ADHD or bipolar disorder. Am J Psychiatry 2010; 167: 61-69.
  • 69 Kruger S. et al. Risk and resilience markers in bipolar disorder: brain responses to emotional challenge in bipolar patients and their healthy siblings. Am J Psychiatry 2006; 163: 257-264.
  • 70 Phillips ML. Coming of age? Neuroimaging biomarkers in youth. Am J Psychiatry 2010; 167: 4-7.