Nervenheilkunde 2013; 32(08): 582-591
DOI: 10.1055/s-0038-1628530
Übersichtsartikel
Schattauer GmbH

Neuronale Korrelate des Psychoserisikosyndroms

Strukturelles Neuroimaging bei Personen mit erhöhtem PsychoserisikoStructural neuroimaging markers in individuals with ultra-high risk conditions for developing psychosis
D. Hirjak
1   Zentrum für Psychosoziale Medizin, Klinik für Allgemeine Psychiatrie, Universitätsklinik Heidelberg
,
P. A. Thomann
1   Zentrum für Psychosoziale Medizin, Klinik für Allgemeine Psychiatrie, Universitätsklinik Heidelberg
,
M. S. Depping
1   Zentrum für Psychosoziale Medizin, Klinik für Allgemeine Psychiatrie, Universitätsklinik Heidelberg
,
R. C. Wolf
1   Zentrum für Psychosoziale Medizin, Klinik für Allgemeine Psychiatrie, Universitätsklinik Heidelberg
› Author Affiliations
Further Information

Publication History

eingegangen am: 01 October 2012

angenommen am: 02 November 2012

Publication Date:
23 January 2018 (online)

Zusammenfassung

Das erhöhte Psychoserisiko ist durch klinischpsychopathologische Merkmale definiert. Eine objektive Erfassung von Personen mit Hochrisikosymptomen und deren klinische Konversion in die manifeste Störung anhand Hirnbildgebungsmarkern könnte durch frühzeitige Interventionen die Prognose der manifesten Erkrankung positiv beeinflussen und die Einleitung störungsorientierter und individualisierter Therapien erleichtern. Trotz einer zunehmenden Anzahl neurobiologischer Studien bei Hochrisikopersonen (HRP) sind die neuronalen Korrelate des erhöhten Psychoserisikos unklar. In dieser Übersichtsarbeit soll die strukturell bildgebende Datenlage bei Personen mit erhöhtem Psychoserisiko vorgestellt und diskutiert werden. In der Literatur konnten anhand einer systematischen Literatursuche via PubMed und MEDLINE (Schlüsselwörter: “psychosis”, “ultra-high-risk”, “dti” und “mri”) und einer erweiterten Literaturrecherche elf strukturelle Bildgebungsstudien, zwei Übersichtsarbeiten und zwei Metaanalysen identifiziert werden. In der Gesamtwertung der Daten gibt es erste Hinweise darauf, dass bei Personen mit erhöhtem Psychoserisiko neuroanatomisch umschriebene Veränderungen der Gehirnstruktur vorliegen könnten. Der prädiktive Wert dieser Befunde im Hinblick auf einer Konversion in die manifeste Psychose kann noch nicht abschließend gewertet werden.

Summary

At present, ultra-high risk (UHR) conditions for developing psychosis are clinically defined syndromes. Early recognition of UHR individuals together with monitoring their transition to full-blown psychosis by means of neuroimaging markers may positively influence recognition, may provide an additional means for guiding early and effective interventions and thus eventually improving clinical outcome parameters. The aim of this article was to systematically review structural neuroimaging findings in individuals meeting UHR criteria. A criteria-based literature search was performed using the electronic databases PubMed and MEDLINE using the keywords “psychosis”, “prodrome OR high risk”, “mri” and “dti”. Relevant literature between January 1977 and August 2012 was considered. We identified eleven whole-brain MRI studies, two reviews and two meta-analyses. Considering the extant data, there is some evidence for grey and white matter alterations within several brain regions which have been associated with manifest psychosis in previous studies conducted in patients with psychotic disorders. However, based on the extant evidence it is currently premature to fully appreciate the clinical significance of brain structural findings in UHR-individuals.

 
  • Literatur

  • 1 Falkai P. Diagnose, Ätiologie und Neuropsychopathologie der Schizophrenie. in Neuropsychologie der Schizophrenie. Symptome, Kognition, Gehirn. Kircher T, Gauggel S. (Eds.) Heidelberg: Springer Verlag; 2008
  • 2 Maurer K, Häfner H. Früherkennung der Schizophrenie und die Bedeutung für Verlauf und Outcome. Journal für Neurologie, Neurochirurgie und Psychiatrie 2007; 08 (02) 24-34.
  • 3 Resch F. Früherkennung und Frühbehandlung der Schizophrenie: Chance oder Dilemma?. Zeitschrift für Kinderund Jugendpsyschiatrie und Psychotherapie 2008; 36 (04) 235-244.
  • 4 Vasic N, Wolf RC. Wie früh kann eine Schizophrenie erkannt und behandelt werden?. Nervenheilkunde 2006; 25: 1-7.
  • 5 Hirjak D. et al. Indizierte Prävention psychotischer Störungen. Aktuelle Evidenz zur Behandlung von Personen mit erhöhtem Psychoserisiko. Nervenheilkunde 2012; 31: 923-932.
  • 6 Bechdolf A. et al. Frühintervention vor schizophrenen Erkrankungen. Nervenheilkunde 2006; 25: 17-27.
  • 7 Bechdolf A. et al. Preventing progression to firstepisode psychosis in early initial prodromal states. Br J Psychiatry 2012; 200 (01) 22-9.
  • 8 McGorry PD. et al. The “close-in” or ultra highrisk model: a safe and effective strategy for research and clinical intervention in prepsychotic mental disorder. Schizophr Bull 2003; 29 (04) 771-90.
  • 9 McGorry PD. et al. Randomized controlled trial of interventions designed to reduce the risk of progression to first-episode psychosis in a clinical sample with subthreshold symptoms. Arch Gen Psychiatry 2002; 59 (10) 921-8.
  • 10 Cornblatt BA. The New York high risk project to the Hillside recognition and prevention (RAP) program. Am J Med Genet 2002; 114 (08) 956-66.
  • 11 Klosterkotter J. Basissymptome und Endphänomene der Schizophrenie. Eine empirische Untersuchung der psychopathologischen Übergangsreihen zwischen defizitären und produktiven Schizophreniesymptomen. Monogr Gesamtgeb Psychiatr Psychiatry Ser 1988; 52: 1-267.
  • 12 Huber G. Das Konzept substratnaher Basissymptome und seine Bedeutung fur Theorie und Therapie schizophrener Erkrankungen. Nervenarzt 1983; 54 (01) 23-32.
  • 13 McGorry PD. et al. Ethics and early intervention in psychosis: keeping up the pace and staying in step. Schizophr Res 2001; 51 (01) 17-29.
  • 14 Yung AR, Nelson B. Young people at ultra high risk for psychosis: a research update. Early Interv Psychiatry 2011; 5 Suppl 1 52-7.
  • 15 Yung AR. et al. The comprehensive assessment of at-risk mental states (CAARMS). Melbourne: University of Melbourne, Department of Psychiatry, Australia; 2000
  • 16 Yung AR. et al. Risk factors for psychosis in an ultra high-risk group: psychopathology and clinical features. Schizophr Res 2004; 67 (2–3) 131-42.
  • 17 Yung AR. et al. Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res 2003; 60 (01) 21-32.
  • 18 Yung AR. et al. Prediction of psychosis. A step towards indicated prevention of schizophrenia. Br J Psychiatry Suppl 1998; 172 (33) 14-20.
  • 19 Yung AR. et al. Testing the ultra high risk (prodromal) criteria for the prediction of psychosis in a clinical sample of young people. Schizophr Res 2006; 84 (01) 57-66.
  • 20 Schultze-Lutter F, Ruhrmann S. Früherkennung und Frühbehandlung von Psychosen. Bremen: UNI-MED Verlag AG; 2008
  • 21 Haroun N. et al. Risk and protection in prodromal schizophrenia: ethical implications for clinical practice and future research. Schizophr Bull 2006; 32 (01) 166-78.
  • 22 Fusar-Poli P. et al. Predicting psychosis: metaanalysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry 2012; 69 (03) 220-9.
  • 23 Simon AE. et al. Ultra high-risk state for psychosis and non-transition: a systematic review. Schizophr Res 2011; 132 (01) 8-17.
  • 24 Falkai P, Maier W. Fortschritte in der neurobiologischen Erforschung der Schizophrenie. Perspektiven fur neue Therapieansatze. Nervenarzt 2006; 77 Suppl 2 S65-74.
  • 25 Gruber O, Falkai P. Von der Identifizierung neurofunktioneller Systeme zur Individualisierung der Therapie schizophrener Storungen. Nervenarzt 2009; 80 (01) 12-6.
  • 26 Pieperhoff P. et al. Grundlagen der Morphometrie und Integration anatomischer und funktioneller Bilddaten. in Funktionelle MRT in Psychiatrie und Neurologie. Schneider F, Fink GR. (Eds.) Heidelberg: Springer; 2007
  • 27 Tittgemeyer M, von Cramon DY. MRT-basierte Morphometrie Eine Bestandsaufnahme. Nervenarzt 2004; 75 (12) 1172-8.
  • 28 Fischl B. et al. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 1999; 09 (02) 195-207.
  • 29 Dale AM. et al. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuro Image 1999; 09 (02) 179-94.
  • 30 Honea R. et al. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 2005; 162 (12) 2233-45.
  • 31 Fornito A. et al. Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophr Res 2009; 108 (1–3) 104-13.
  • 32 Ellison-Wright I. et al. The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry 2008; 165 (08) 1015-23.
  • 33 Eickhoff SB. et al. Metaanalysen in der klinischen Hirnforschung. Nervenarzt 2010; 81 (01) 32-8.
  • 34 Borgwardt SJ. et al. Regional gray matter volume in monozygotic twins concordant and discordant for schizophrenia. Biol Psychiatry 2010; 67 (10) 956-64.
  • 35 Lui S. et al. Neuroanatomical differences between familial and sporadic schizophrenia and their parents: an optimized voxel-based morphometry study. Psychiatry Res 2009; 171 (02) 71-81.
  • 36 Honea RA. et al. Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings. Biol Psychiatry 2008; 63 (05) 465-74.
  • 37 Hulshoff HEPol. et al. Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia using voxel-based morphometry. NeuroImage 2006; 31 (02) 482-8.
  • 38 McDonald C. et al. Association of genetic risks for schizophrenia and bipolar disorder with specific and generic brain structural endophenotypes. Arch Gen Psychiatry 2004; 61 (10) 974-84.
  • 39 McIntosh AM. et al. Voxel-based morphometry of patients with schizophrenia or bipolar disorder and their unaffected relatives. Biol Psychiatry 2004; 56 (08) 544-52.
  • 40 Marcelis M. et al. Searching for a structural endophenotype in psychosis using computational morphometry. Psychiatry Res 2003; 122 (03) 153-67.
  • 41 Maurer K, Hafner H. Checkliste für die Hausarztpraxis in Arbeit. Erste Signale einer Psychose richtig deuten. MMW Fortschr Med 2007; 149 (13) 36-8.
  • 42 Häfner H. et al. Ein Instrument zur retrospektiven Einschätzung des Erkrankungsbeginn bei Schizophrenie (Instrument for the Retrospective Assessment of the Onset of Schizophrenia – “IRAOS”). Entwicklung und Ergebnisse. Z Klin Psychol 1990; 19: 230-55.
  • 43 Klosterkotter JM. et al. Diagnosing schizophrenia in the initial prodromal phase. Arch Gen Psychiatry 2001; 58 (02) 158-64.
  • 44 Fusar-Pol P. et al. Mapping prodromal psychosis – a critical review of neuroimaging studies. Eur Psychiatry 2012; 27 (03) 181-91.
  • 45 Jung WH. et al. Structural brain alterations in individuals at ultra-high risk for psychosis: a review of magnetic resonance imaging studies and future directions. J Korean Med Sci 2010; 25 (12) 1700-9.
  • 46 Fusar-Poli PS. et al. Neuroanatomy of vulnerability to psychosis: a voxel-based meta-analysis. Neurosci Biobehav Rev 2011; 35 (05) 1175-85.
  • 47 Fusar-Poli P. Voxel-wise meta-analysis of fMRI studies in patients at clinical high risk for psychosis. J Psychiatry Neurosci 2012; 37 (02) 106-12.
  • 48 Borgwardt SJ. et al. Regional gray matter volume abnormalities in the at risk mental state. Biol Psychiatry 2007; 61 (10) 1148-56.
  • 49 Borgwardt S. et al. Structural brain abnormalities in individuals with an at-risk mental state who later develop psychosis. Br J Psychiatry 2007; Suppl. 51 s69-75.
  • 50 Meisenzahl EM. et al. Structural brain alterations in subjects at high-risk of psychosis: a voxel-based morphometric study. Schizophr Res 2008; 102 (1–3) 150-62.
  • 51 Koutsouleris N. et al. Neuroanatomical correlates of different vulnerability states for psychosis and their clinical outcomes. Br J Psychiatry 2009; 195 (03) 218-26.
  • 52 Fusar-Poli P. et al. Gray matter alterations related to P300 abnormalities in subjects at high risk for psychosis: longitudinal MRI-EEG study. NeuroImage 2011; 55 (01) 320-8.
  • 53 Borgwardt SJ. et al. Reductions in frontal, temporal and parietal volume associated with the onset of psychosis. Schizophr Res 2008; 106 (2–3) 108-14.
  • 54 Jung WH. et al. Cortical thickness reduction in individuals at ultra-high-risk for psychosis. Schizophr Bull 2011; 37 (04) 839-49.
  • 55 Stephan KE, Fink GR. Lateralität und Konnektivität. in Funktionelle MRT in Psychiatrie und Neurologie. Schneider F, Fink GR. (Eds) Heidelberg: Springer; 2007
  • 56 Peters BD. et al. Diffusion tensor imaging in the early phase of schizophrenia: what have we learned?. J Psychiatr Res 2010; 44 (15) 993-1004.
  • 57 Peters BD. et al. White matter fibertracking in firstepisode schizophrenia, schizoaffective patients and subjects at ultra-high risk of psychosis. Neuropsychobiology 2008; 58 (01) 19-28.
  • 58 Peters BD. et al. Preliminary evidence for reduced frontal white matter integrity in subjects at ultrahigh-risk for psychosis. Schizophr Res 2009; 111 (1–3) 192-3.
  • 59 Karlsgodt KH. et al. White matter integrity and prediction of social and role functioning in subjects at ultra-high risk for psychosis. Biol Psychiatry 2009; 66 (06) 562-9.
  • 60 Carletti F. et al. Alterations in white matter evident before the onset of psychosis. Schizophr Bull 2012; 38 (06) 1170-9.
  • 61 Bloemen O. et al. White-matter markers for psychosis in a prospective ultra-high-risk cohort. Psychol Med 2010; 40 (08) 1297-304.
  • 62 Pantelis CD. et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 2003; 361 9354 281-8.
  • 63 Sun D. et al. Progressive brain structural changes mapped as psychosis develops in ‘at risk’ individuals. Schizophr Res 2009; 108 (1–3) 85-92.
  • 64 Smieskova R. et al. Neuroimaging predictors of transition to psychosis – a systematic review and meta-analysis. Neurosci Biobehav Rev 2010; 34 (08) 1207-22.
  • 65 Eickhoff SB, Rottschy C. Metaanalysen, Datenbanken und Modelle in der psychiatrischen Forschung. in Positionen der Psychiatrie. Schneider F. (Ed.) Berlin: Springer; 2012
  • 66 Moher D. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62 (10) 1006-12.
  • 67 Moher D. et al. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of Reporting of Meta-analyses. Lancet 1999; 354 9193 1896-900.
  • 68 Kubicki M. et al. Evidence for white matter abnormalities in schizophrenia. Curr Opin Psychiatry 2005; 18 (02) 121-34.
  • 69 De Peri L. et al. Brain structural abnormalities at the onset of schizophrenia and bipolar disorder: a meta-analysis of controlled magnetic resonance imaging studies. Curr Pharm Des 2012; 18 (04) 486-94.
  • 70 Pantelis C. et al. Neuroimaging and emerging psychotic disorders: the Melbourne ultra-high risk studies. Int Rev Psychiatry 2007; 19 (04) 371-81.
  • 71 Cahn W. et al. Brain volume changes in first-episode schizophrenia: a 1-year follow-up study. Arch Gen Psychiatry 2002; 59 (11) 1002-10.
  • 72 Ho BC. et al. Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen Psychiatry 2003; 60 (06) 585-94.
  • 73 Kasai K. et al. Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. Am J Psychiatry 2003; 160 (01) 156-64.
  • 74 Kubicki M. et al. Voxel-based morphometric analysis of gray matter in first episode schizophrenia. NeuroImage 2002; 17 (04) 1711-9.
  • 75 Giedd JN. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 1999; 02 (10) 861-3.
  • 76 Giedd JN. Structural magnetic resonance imaging of the adolescent brain. Ann N Y Acad Sci 2004; 1021: 77-85.
  • 77 Tost H, Meyer-Lindenberg A. Puzzling over schizophrenia: schizophrenia, social environment and the brain. Nat Med 2012; 18 (02) 211-3.
  • 78 Lederbogen FP. et al. City living and urban upbringing affect neural social stress processing in humans. Nature 2011; 474 7352 498-501.