Vet Comp Orthop Traumatol 1991; 4(01): 1-10
DOI: 10.1055/s-0038-1633242
Original Research
Schattauer GmbH

A Mechanical and Histological Comparison of Bone Healing Using Titanium Bone Plates with Porous Surfaced Titanium Screws versus Smooth Surfaced Titanium Screws

P. D. Schwarz
1   From the Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
,
K. A. Bruecker
1   From the Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
,
J. L. Palmer
1   From the Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
,
Barbara E. Powers
2   From the Department of Radiology and Radiation Biology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
,
M. B. Histand
3   From the Department of Mechanical Engineering, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
› Author Affiliations
Further Information

Publication History

Received for publication 15 January 1990

Publication Date:
06 February 2018 (online)

Summary

Bilateral midshaft femoral osteotomies were stabilized with a 3 mm fracture gap in 12 dogs using titanium bone plates and either smooth surfaced (SS) or porous surfaced (PS) titanium screws. Mechanical studies demonstrated that PS screws required a significantly greater torque to remove than the SS screws at both 8 and 16 weeks. At 16 weeks, screw removal torque increased by a factor of 1.3 over the insertion torque for PS screws and decreased by a factor of 2.9 for SS screws. Histologically, the amount of new bone formation and porosity, over the entire length of the femur, was significantly greater in the femora stabilized with PS screws; indicative of greater overall fixation rigidity. At both time periods, there was an increase in torsional stiffness in the osteotomies stabilized with SS screws. Radiographically, there was no difference in the osteotomy callus area for either screw type. From this study, there appears to be advantages to using PS bone screws instead of SS screws when subjected to dynamic loading such as gap fixation.

 
  • References

  • 1 Prieur WD, Sumner-Smith G. Fundamental principles of the AO/ASIF method. In: Brinker WO, Hohn RB, Prieur WD. (eds). Manual of Internal Fixation in Small Animals. Berlin: Springer; 1984: 3-16.
  • 2 DeYoung DJ, Probst CW. Methods of internal fracture fixation. In: Slatter DH. (ed). Textbook of Small Animal Surgery. Philadelphia: WB Saunders; 1985: 1949-72.
  • 3 Nunamaker DM, Perren SM. Force measurements in screw fixation. J Biomech 1976; 9: 669-75.
  • 4 Koranyi E, Bowman CE, Knecht CD, Janssen M. Holding power of orthopedic screws in bone. Clin Orthop 1970; 72: 283-6.
  • 5 Schatzker J, Sanderson R, Murnaghan JP. The holding power of orthopedic screws in vivo. Clin Orthop 1975; 108: 115-26.
  • 6 Ansell RH, Scales JT. A study of some factors which affect the strength of screws and their insertion and holding power in bone. J Biomech 1968; 1: 279-302.
  • 7 Martin RB. Osteonal remodeling in response to screw implantation in canine femora. J Orthop Res 1987; 5: 445-52.
  • 8 Schatzker J, Horne JG, Sumner-Smith G. The effect of movement on the holding power of screws in bone. Clin Orthop 1975; 111: 257-62.
  • 9 Gotzen L, Haas M, Hutter J. Biomechanical studies on torque and force of the 4.5 mm AO cortex screw as a lag screw. In: Uhthoff HK. (ed). Current Concepts of Internal Fixation of Fractures. Berlin: Springer; 1981: 259-67.
  • 10 Perren SM. The reaction of cortical bone to static compression. Acta Orthop Scand 1969; 125 (Suppl): 19-29.
  • 11 Schatzker J, Horne JG, Sumner-Smith G. The reaction of cortical bone to compression by screw threads. Clin Orthop 1975; 111: 263-5.
  • 12 Claes L, Hutzschenreuter P, Pohler O. Lose Momente von Kortikaliszugschrauben in Abhangigkeit von Implantationzeit und Oberflachenbeschaffenheit. Arch Orthop Unfall-Chir 1976; 85: 155-9.
  • 13 Uhthoff HK. Mechanical factors influencing the holding power of screws in compact bone. J Bone Joint Surg (Br) 1973; 55: 633-9.
  • 14 Uhthoff HK, Germain JP. The reversal of tissue differentiation around screws. Clin Orthop 1981; 123: 248-52.
  • 15 Vangsness CT, Carter DR, Frankel EH. In vitro evaluation of the loosening characteristics of self-tapped and nonself-tapped cortical bone screws. Clin Orthop 1981; 157: 279-86.
  • 16 Tonino AJ, Davidson CL, Klopper PJ, Linclau LA. Protection from stress in bone and its effects: experiments with stainless steel and plastic plates in dogs. J Bone Joint Surg (Br) 1976; 58: 107-13.
  • 17 Matter P, Brennwald J, Perren SM. The effect of static compression and tension on internal remodelling of cortical bone. Helvetica Chirurgica Acta 1974; 12 (Suppl): 1-44.
  • 18 Hutzschenreuter P, Brummer H. Screw design and stability. In: Uhthoff HK. (ed). Current Concepts of Internal Fixation of Fractures. Berlin: Springer; 1980: 244-50.
  • 19 Hutzschenreuter P, Claes L, Pohler O. Lose Momente bei Kortikaliszugschrauben mit unterschiedlicher Oberflache und ihre histologischen Korrelate. Helv Chir Acta 1976; 43: 765-8.
  • 20 Olmstead ML, Schenk RK, Pohler O, Hohn RB, Payne J. Bone screw holding power: the effect of surface character and metal type. Vet Surg 1986; 15: 129.
  • 21 Carlsson L, Rostlund T, Albrektsson B, Albrektsson T, Branemark PI. Osseointegration of titanium implants. Acta Orthop Scand 1986; 57: 285-9.
  • 22 Orton EC, Pohler O, Schenk RK, Hohn RB. Comparison of porous titanium-surfaced and standard smooth-surfaced bone plates and screws in an unstable fracture model in dogs. Am J Vet Res 1986; 47: 677-82.
  • 23 Nilles JL, Coletti JM, Wilson C. Biomechanical evaluation of bone-porous material interfaces. J Biomed Mater Res 1973; 7: 231-51.
  • 24 Hirschorn JS, McBeath AA, Dustoor MR. Porous titanium surgical implant materials. J Biomed Mater Res Symp 1971; 2: 49-67.
  • 25 Pilliar RM, Cameron HU, Binnington AG, Szivek J, Macnab I. Bone ingrowth and stress shielding with a porous surface coated fracture fixation plate. J Biomed Mater Res 1979; 13: 799-810.
  • 26 Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop 1980; 150: 263-70.
  • 27 Sumner DR, Rivero DP, Skipor AK, Galante JO. The relationship between bone ingrowth and the strength and stiffness of the bone-implant interface. Transactions of the 12th Annual Meeting, Society for Biomaterials 1986; 9: 169.
  • 28 Clemow AJT, Weinstein AM, Klawitter JJ, Koeneman J, Anderson J. Interface mechanics of porous titanium implants. J Biomed Mater Res 1981; 15: 73-82.
  • 29 Cook SD, Walsh KA, Haddad RJ. Interface mechanics and bone growth into porous Co-Cr-Mo alloy implants. Clin Orthop 1985; 193: 271-80.
  • 30 Thomas KA, Cook SD. An evaluation of variables influencing implant fixation by direct bone apposition. J Biomed Mater Res 1985; 19: 875-901.
  • 31 Harris WH, Weinberg EH. Microscopic method of measuring increases in cortical bone volume and mass. Calcif Tiss Res 1972; 8: 190-6.
  • 32 Pawluk RJ, Musso E, Tzitzikalakis GI, Dick HM. The effects of internal fixation on altering plate screw strain distributions. Transactions of the 31st Annual Meeting, Orthopedic Research Society 1985; 10: 185.
  • 33 Beaupre GS, Carter DR, Orr TE, Csongradi J. Stresses in plated long-bones: the role of screw tightness and interface slipping. J Orthop Res 1988; 6: 39-50.
  • 34 Carter DR, Shimaoka EE, Harris WH, Gates EI, Caler WE, McCarthy JC. Changes in long-bone structural properties during the first 8 weeks of plate implantation. J Orthop Res 1984; 2: 80-9.
  • 35 Cordey J, Perren SM. Limits of plate on bone friction in internal fixation of fractures. Transactions of the 31st Annual Meeting, Orthopedic Research Society 1985; 10: 186.
  • 36 Cordey J, Rahn BA, Perren SM. Human torque control in the use of bone screws. In: Uhthoff HK. (ed). Current Concepts of Internal Fixation of Fractures. Berlin: Springer; 1980: 235-43.
  • 37 DeVito PD, Rivlin M, Price D, Goldstein SA, Matthews LS. Friction as a major factor in plate and screw fracture fixation stability: The design of a new plate surface. Transactions of the 28th Annual Meeting, Orthopedic Research Society 1982; 7: 198.
  • 38 Cordey J, Martin D, Schlaepfer F, Perren SM. Interaction between screw and plate in internal fixation: Torque components in cortical bone screws. In: Uhthoff HK. (ed). Current Concepts in Internal Fixation of Fractures. Berlin: Springer; 1980: 251-8.
  • 39 Bobyn JD, Wilson GJ, MacGregor DC, Pilliar RM, Weatherly GC. Effect of pore size on the peel strength of attachment of fibrous tissue to porous-surfaced implants. J Biomed Mater Res 1982; 16 (05) 571-84.
  • 40 Klawitter JJ, Bagwell JG, Weinstein AM, Sauer BW, Pruitt JR. An evaluation of bone ingrowth into porous high density polyethylene. J Biomed Mater Res 1976; 10: 311-23.
  • 41 Panjabi MM, Walter SD, Karud M, White AA, Lawson JP. Correlations of radiographic analysis of healing fractures with strength: A statistical analysis of experimental osteotomies. J Orthop Res 1985; 3: 212-8.
  • 42 Olerud S, Danckwardt-Lilliestrom G. Fracture healing in compression osteosynthesis in the dog. J Bone Joint Surg 1968; 50 (B): 844-51.
  • 43 Schenk RK. Histology of Fracture Repair and Non-Union. A.O./A.S.I.F. publication; Bern, Switzerland: 1978
  • 44 McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg 1978; 60 (B): 150-62.
  • 45 Perren SM. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop 1979; 138: 175-96.
  • 46 Rand JA, An KN, Chao EYS, Kelly PJ. A comparison of the effect of open intramedullary nailing and compression plate fixation on fracture-site blood flow and fracture union. J Bone Joint Surg 1981; 63: 427-42.
  • 47 Rahn BA, Gallinaro P, Baltensperger A, Perren SM. Primary bone healing. An experimental study in the rabbit. J Bone Joint Surg 1971; 53: 783-6.
  • 48 Akeson WH, Woo SUY, Rutherford L, Coutts RD, Gonsalves M, Amiel D. The effects of rigidity of internal fixation plates on long bone remodeling. A biomechanical and quantitative histological study. Acta Orthop Scand 1976; 47: 241-9.
  • 49 Bradley GW, McKenna GB, Dunn HK, Daniels AU, Statton WO. Effects of flexural rigidity of plates on bone healing. J Bone Joint Surg 1979; 866-72.
  • 50 Uhthoff HK, Dubuc FL. Bone structure changes in the dog under rigid internal fixation. Clin Orthop 1971; 81: 165-70.
  • 51 Rhinelander FW, Wilson JW. Blood supply to developing mature and healing bone. In: Sumner-Smith G. (ed). Bone in Clinical Orthopedics: A Study in Comparative Osteology. Philadelphia: WB Saunders; 1982: 106-12.
  • 52 Gunst MA. Interference with bone blood supply through plating of intact bone. In: Uhthoff HK. (ed). Current Concepts of Internal Fixation of Fractures. Berlin: Springer; 1980: 268-76.
  • 53 DeHoff RT, Rhines FN. Quantitative Microscopy. New York: McGraw-Hill Book Co; 1968: 68-76.
  • 54 Recker RR. Bone Histomorphometry: Techniques & Interpretations. Boca Raton: CRC Press; 1983
  • 55 Nunamaker DM, Perren S. Pure titanium plates in sheep: the effect of rigidity and compression. In: Uhthoff HK. (ed). Current Concepts of Internal Fixation. Berlin: Springer; 1980: 389-97.
  • 56 Claes L. The mechanical and morphological properties of bone beneath internal fixation plates of differing rigidity. J Orthop Res 1989; 7: 170-7.
  • 57 Woo SLY, Lothringer KS, Akeson WH, Coutts RD, Woo YK, Simon BR, Gomez MA. Less rigid internal fixation plates: historical perspectives and new concepts. J Orthop Res 1984; 4: 431-49.
  • 58 Uhthoff HK, Bardos DI, Liskova-Kiar M. The effects of stainless steel and of titanium alloy plates on fracture healing. In: Uhthoff HK. (ed). Current Concepts of Internal Fixation of Fractures. Berlin: Springer; 1980: 398-403.