Thromb Haemost 2018; 118(07): 1279-1295
DOI: 10.1055/s-0038-1657770
Stroke, Systemic or Venous Thromboembolism
Georg Thieme Verlag KG Stuttgart · New York

Genome-Wide Expression Analysis Suggests Hypoxia-Triggered Hyper-Coagulation Leading to Venous Thrombosis at High Altitude

Prabhash Kumar Jha*
1   Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organisation, Delhi, India
,
Anita Sahu*
1   Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organisation, Delhi, India
,
Amit Prabhakar
1   Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organisation, Delhi, India
,
Tarun Tyagi
1   Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organisation, Delhi, India
,
Tathagata Chatterjee
2   Army Hospital (Research and Referral), New Delhi, India
,
Prathima Arvind
3   Thrombosis Research Institute, India, Bangalore, Karnataka, India
,
Jiny Nair
3   Thrombosis Research Institute, India, Bangalore, Karnataka, India
,
Neha Gupta
1   Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organisation, Delhi, India
,
Babita Kumari
1   Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organisation, Delhi, India
,
Velu Nair
4   Armed Forces Medical College, Pune, Maharashtra, India
,
Nitin Bajaj
5   Command Hospital (Western Command) Chandimandir, Panchkula, Haryana, India
,
Jayashree Shanker
3   Thrombosis Research Institute, India, Bangalore, Karnataka, India
,
Manish Sharma
1   Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organisation, Delhi, India
,
Bhuvnesh Kumar
1   Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organisation, Delhi, India
,
Mohammad Zahid Ashraf#
1   Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organisation, Delhi, India
› Author Affiliations
Further Information

Publication History

29 December 2017

19 April 2018

Publication Date:
04 June 2018 (online)

Abstract

Venous thromboembolism (VTE), a multi-factorial disease, is the third most common cardiovascular disease. Established genetic and acquired risk factors are responsible for the onset of VTE. High altitude (HA) also poses as an additional risk factor, predisposing individuals to VTE; however, its molecular mechanism remains elusive. This study aimed to identify genes/pathways associated with the pathophysiology of deep vein thrombosis (DVT) at HA. Gene expression profiling of DVT patients, who developed the disease, either at sea level or at HA-DVT locations, resulted in differential expression of 378 and 875 genes, respectively. Gene expression profiles were subjected to bioinformatic analysis, followed by technical and biological validation of selected genes using quantitative reverse transcription-polymerase chain reaction. Both gene ontology and pathway analysis showed enrichment of genes involved in haemostasis and platelet activation in HA-DVT patients with the most relevant pathway being ‘response to hypoxia’. Thus, given the environmental condition the differential expression of hypoxia-responsive genes (angiogenin, ribonuclease, RNase A family, 5; early growth response 1; lamin A; matrix metallopeptidase 14 [membrane-inserted]; neurofibromin 1; PDZ and LIM domain 1; procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1; solute carrier family 6 [neurotransmitter transporter, serotonin], member 4; solute carrier family 9 [sodium/hydrogen exchanger], member 1; and TEK tyrosine kinase, endothelial) in HA-DVT could be a determining factor to understand the pathophysiology of DVT at HA.

Authors' Contributions

P.K.J. and A.S. performed the experiments, analysed the data and wrote the manuscript; A.P. and B.K. performed the real-time PCR experiments; P.A., J.N. and J.S. performed the microarray experiments; T.C., N.B. and V.N. participated in the clinical part of the study; T.T., M.S. and N.G. edited the manuscript; M.Z.A. designed the study, interpreted the data and drafted the manuscript. P.K.J. and A.S. contributed equally to this study.


* These authors contributed equally to the manuscript.


# Present address: Department of Biotechnology, Jamia Millia Islamia, New Delhi-110025, India (e-mail: zashraf@jmi.ac.in).


 
  • References

  • 1 Reitsma PH, Versteeg HH, Middeldorp S. Mechanistic view of risk factors for venous thromboembolism. Arterioscler Thromb Vasc Biol 2012; 32 (03) 563-568
  • 2 Heit JA. Epidemiology of venous thromboembolism. Nat Rev Cardiol 2015; 12 (08) 464-474
  • 3 Moore LG, Niermeyer S, Zamudio S. Human adaptation to high altitude: regional and life-cycle perspectives. Am J Phys Anthropol 1998; 107 (Suppl. 27) 25-64
  • 4 Bendz B, Rostrup M, Sevre K, Andersen TO, Sandset PM. Association between acute hypobaric hypoxia and activation of coagulation in human beings. Lancet 2000; 356 (9242): 1657-1658
  • 5 Hultgren HN. High altitude pulmonary edema. In: High Altitude Medicine. Stanford, CA: Hultgren Publications; 1997
  • 6 Hackett PH, Roach RC. High-altitude medicine. In: Auerbach PS. , ed. Wilderness Medicine. 4th ed. St. Louis, MO: Mosby; 2001
  • 7 Bärtsch P, Schmidt EK, Straub PW. Fibrinopeptide A after strenuous physical exercise at high altitude. J Appl Physiol 1982; 53 (01) 40-43
  • 8 Andrew M, O'Brodovich H, Sutton J. Operation Everest II: coagulation system during prolonged decompression to 282 Torr. J Appl Physiol (1985) 1987; 63 (03) 1262-1267
  • 9 Bärtsch P, Haeberli A, Franciolli M, Kruithof EK, Straub PW. Coagulation and fibrinolysis in acute mountain sickness and beginning pulmonary edema. J Appl Physiol (1985) 1989; 66 (05) 2136-2144
  • 10 Le Roux G, Larmignat P, Marchal M, Richalet JP. Haemostasis at high altitude. Int J Sports Med 1992; 13 (Suppl. 01) S49-S51
  • 11 Hudson JG, Bowen AL, Navia P. , et al. The effect of high altitude on platelet counts, thrombopoietin and erythropoietin levels in young Bolivian airmen visiting the Andes. Int J Biometeorol 1999; 43 (02) 85-90
  • 12 Mannucci PM, Gringeri A, Peyvandi F, Di Paolantonio T, Mariani G. Short-term exposure to high altitude causes coagulation activation and inhibits fibrinolysis. Thromb Haemost 2002; 87 (02) 342-343
  • 13 Tyagi T, Ahmad S, Gupta N. , et al. Altered expression of platelet proteins and calpain activity mediate hypoxia-induced prothrombotic phenotype. Blood 2014; 123 (08) 1250-1260
  • 14 Bradford A. The role of hypoxia and platelets in air travel-related venous thromboembolism. Curr Pharm Des 2007; 13 (26) 2668-2672
  • 15 Kuipers S, Cannegieter SC, Middeldorp S, Robyn L, Büller HR, Rosendaal FR. The absolute risk of venous thrombosis after air travel: a cohort study of 8,755 employees of international organisations. PLoS Med 2007; 4 (09) e290
  • 16 Brill A, Suidan GL, Wagner DD. Hypoxia, such as encountered at high altitude, promotes deep vein thrombosis in mice. J Thromb Haemost 2013; 11 (09) 1773-1775
  • 17 Hiltunen MO, Tuomisto TT, Niemi M. , et al. Changes in gene expression in atherosclerotic plaques analyzed using DNA array. Atherosclerosis 2002; 165 (01) 23-32
  • 18 Chen YC, Bui AV, Diesch J. , et al. A novel mouse model of atherosclerotic plaque instability for drug testing and mechanistic/therapeutic discoveries using gene and microRNA expression profiling. Circ Res 2013; 113 (03) 252-265
  • 19 Koizumi G, Kumai T, Egawa S. , et al. Gene expression in the vascular wall of the aortic arch in spontaneously hypertensive hyperlipidemic model rats using DNA microarray analysis. Life Sci 2013; 93 (15) 495-502
  • 20 Gertow K, Nobili E, Folkersen L. , et al. 12- and 15-lipoxygenases in human carotid atherosclerotic lesions: associations with cerebrovascular symptoms. Atherosclerosis 2011; 215 (02) 411-416
  • 21 King JY, Ferrara R, Tabibiazar R. , et al. Pathway analysis of coronary atherosclerosis. Physiol Genomics 2005; 23 (01) 103-118
  • 22 Levula M, Oksala N, Airla N. , et al. Genes involved in systemic and arterial bed dependent atherosclerosis--Tampere Vascular study. PLoS One 2012; 7 (04) e33787
  • 23 Chohan IS. Blood coagulation changes at high altitude. Def Sci J 1984; 34: 361-379
  • 24 Pichler Hefti J, Risch L, Hefti U. , et al. Changes of coagulation parameters during high altitude expedition. Swiss Med Wkly 2010; 140 (7-8): 111-117
  • 25 Singh I, Chohan IS. Abnormalities of blood coagulation at high altitude. Int J Biometeorol 1972; 16 (03) 283-297
  • 26 Kumar S. High altitude induced deep venous thrombosis: a study of 28 cases. Indian J Surg 2006; 68: 84-88
  • 27 Golebiewska EM, Poole AW. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev 2015; 29 (03) 153-162
  • 28 Laurens N, Koolwijk P, de Maat MP. Fibrin structure and wound healing. J Thromb Haemost 2006; 4 (05) 932-939
  • 29 Shannon P, Markiel A, Ozier O. , et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13 (11) 2498-2504
  • 30 Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4 (01) 44-57
  • 31 Franchini M, Lippi G. Von Willebrand factor and thrombosis. Ann Hematol 2006; 85 (07) 415-423
  • 32 Reininger AJ. Function of von Willebrand factor in haemostasis and thrombosis. Haemophilia 2008; 14 (Suppl. 05) 11-26
  • 33 Ruggeri ZM. The role of von Willebrand factor in thrombus formation. Thromb Res 2007; 120 (Suppl. 01) S5-S9
  • 34 Dahm A, Van Hylckama Vlieg A, Bendz B, Rosendaal F, Bertina RM, Sandset PM. Low levels of tissue factor pathway inhibitor (TFPI) increase the risk of venous thrombosis. Blood 2003; 101 (11) 4387-4392
  • 35 Esmon CT. The protein C pathway. Chest 2003; 124 (3, Suppl): 26S-32S
  • 36 Réti M, Farkas P, Csuka D. , et al. Complement activation in thrombotic thrombocytopenic purpura. J Thromb Haemost 2012; 10 (05) 791-798
  • 37 Foley JH, Walton BL, Aleman MM. , et al. Complement activation in arterial and venous thrombosis is mediated by plasmin. EBioMedicine 2016; 5: 175-182
  • 38 Li P, Huang J, Tian HJ, Huang QY, Jiang CH, Gao YQ. Regulation of bone marrow hematopoietic stem cell is involved in high-altitude erythrocytosis. Exp Hematol 2011; 39 (01) 37-46
  • 39 Zovein AC, Forsberg EC. Hematopoietic development at high altitude: blood stem cells put to the test. Development 2015; 142 (10) 1728-1732
  • 40 Reeves JT. Is increased hematopoiesis needed at altitude?. J Appl Physiol (1985) 2004; 96 (05) 1579-1580
  • 41 Hirota K. Involvement of hypoxia-inducible factors in the dysregulation of oxygen homeostasis in sepsis. Cardiovasc Hematol Disord Drug Targets 2015; 15 (01) 29-40
  • 42 Schreiber TD, Steinl C, Essl M. , et al. The integrin alpha9beta1 on hematopoietic stem and progenitor cells: involvement in cell adhesion, proliferation and differentiation. Haematologica 2009; 94 (11) 1493-1501
  • 43 Cambi A, van Helden SFG, Figdor CG. Roles for integrins and associated proteins in the haematopoietic system. In: Madame Curie Bioscience Database. Austin, TX: Landes Bioscience; 2000-2013
  • 44 Goggins BJ, Chaney C, Radford-Smith GL, Horvat JC, Keely S. Hypoxia and integrin-mediated epithelial restitution during mucosal inflammation. Front Immunol 2013; 4: 272
  • 45 Bergmeier W, Hynes RO. Extracellular matrix proteins in hemostasis and thrombosis. Cold Spring Harb Perspect Biol 2012; 4 (02) a005132
  • 46 Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor?. Blood 2003; 102 (02) 449-461
  • 47 Croft D, Mundo AF, Haw R. , et al. The Reactome pathway knowledgebase. Nucleic Acids Res 2014; 42 (Database issue): D472-D477
  • 48 Bindea G, Mlecnik B, Hackl H. , et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009; 25 (08) 1091-1093
  • 49 Bärtsch P, Waber U, Haeberli A. , et al. Enhanced fibrin formation in high-altitude pulmonary edema. J Appl Physiol (1985) 1987; 63 (02) 752-757
  • 50 Vij AG. Effect of prolonged stay at high altitude on platelet aggregation and fibrinogen levels. Platelets 2009; 20 (06) 421-427
  • 51 Lehmann T, Mairbäurl H, Pleisch B, Maggiorini M, Bärtsch P, Reinhart WH. Platelet count and function at high altitude and in high-altitude pulmonary edema. J Appl Physiol (1985) 2006; 100 (02) 690-694
  • 52 Rahaman MM, Reinders FG, Koes D. , et al. Structure guided chemical modifications of propylthiouracil reveal novel small molecule inhibitors of cytochrome b5 reductase 3 that increase nitric oxide bioavailability. J Biol Chem 2015; 290 (27) 16861-16872
  • 53 Freedman JE, Loscalzo J. Nitric oxide and its relationship to thrombotic disorders. J Thromb Haemost 2003; 1 (06) 1183-1188
  • 54 Hull CM, Rajendran D, Fernandez Barnes A. Deep vein thrombosis and pulmonary embolism in a mountain guide: awareness, diagnostic challenges, and management considerations at altitude. Wilderness Environ Med 2016; 27 (01) 100-106
  • 55 Gupta N, Sahu A, Prabhakar A. , et al. Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia. Proc Natl Acad Sci U S A 2017; 114 (18) 4763-4768
  • 56 Bovill EG, van der Vliet A. Venous valvular stasis-associated hypoxia and thrombosis: what is the link?. Annu Rev Physiol 2011; 73: 527-545
  • 57 Yan SF, Mackman N, Kisiel W, Stern DM, Pinsky DJ. Hypoxia/hypoxemia-induced activation of the procoagulant pathways and the pathogenesis of ischemia-associated thrombosis. Arterioscler Thromb Vasc Biol 1999; 19 (09) 2029-2035
  • 58 Naukkarinen J, Gentile M, Soro-Paavonen A. , et al. USF1 and dyslipidemias: converging evidence for a functional intronic variant. Hum Mol Genet 2005; 14 (17) 2595-2605
  • 59 Fan Y-M, Hernesniemi J, Oksala N. , et al. Upstream Transcription Factor 1 (USF1) allelic variants regulate lipoprotein metabolism in women and USF1 expression in atherosclerotic plaque. Sci Rep 2014; 4 (04) 4650
  • 60 Willam C, Koehne P, Jürgensen JS. , et al. Tie2 receptor expression is stimulated by hypoxia and proinflammatory cytokines in human endothelial cells. Circ Res 2000; 87 (05) 370-377
  • 61 Kishimoto K, Yoshida S, Ibaragi S. , et al. Hypoxia-induced up-regulation of angiogenin, besides VEGF, is related to progression of oral cancer. Oral Oncol 2012; 48 (11) 1120-1127
  • 62 Land SC, Tee AR. Hypoxia-inducible factor 1α is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem 2007; 282 (28) 20534-20543
  • 63 Gilkes DM, Bajpai S, Wong CC. , et al. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol Cancer Res 2013; 11 (05) 456-466
  • 64 Tan PK, Downey TJ, Spitznagel Jr EL. , et al. Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 2003; 31 (19) 5676-5684
  • 65 Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The SVA package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012; 28 (06) 882-883
  • 66 Parry RM, Jones W, Stokes TH. , et al. k-Nearest neighbor models for microarray gene expression analysis and clinical outcome prediction. Pharmacogenomics J 2010; 10 (04) 292-309
  • 67 Chu L, Scharf E, Kondo T. GeneSpring: tools for analyzing microarray expression data. Genome Informatics 2001; 12: 227-229
  • 68 Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005; 21 (16) 3448-3449
  • 69 Wu G, Dawson E, Duong A. , et al. ReactomeFIViz: the Reactome FI Cytoscape app for pathway and network-based data analysis. [version 1; referees: 1 approved, 1 approved with reservations] F1000 Res 2014
  • 70 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25 (04) 402-408