Hamostaseologie 1987; 07(06): 151-157
DOI: 10.1055/s-0038-1660547
Originalarbeit
Schattauer GmbH

Calpain und Calpastatin in menschlichen Blutplättchen

R. Kannagi
1   Abteilung für Klinische Forschung und Laboratoriumsmedizin, Medizinische Fakultät der Universität Kyoto, Japan
,
Y. Yamagata
1   Abteilung für Klinische Forschung und Laboratoriumsmedizin, Medizinische Fakultät der Universität Kyoto, Japan
,
Y. Ando
1   Abteilung für Klinische Forschung und Laboratoriumsmedizin, Medizinische Fakultät der Universität Kyoto, Japan
,
E. Takano
1   Abteilung für Klinische Forschung und Laboratoriumsmedizin, Medizinische Fakultät der Universität Kyoto, Japan
,
A. Kitahara
1   Abteilung für Klinische Forschung und Laboratoriumsmedizin, Medizinische Fakultät der Universität Kyoto, Japan
,
T. Murachi
1   Abteilung für Klinische Forschung und Laboratoriumsmedizin, Medizinische Fakultät der Universität Kyoto, Japan
› Author Affiliations
Further Information

Publication History

Publication Date:
25 June 2018 (online)

 

 
  • LITERATUR

  • 1 Ando Y, Imamura S, Yamagata Y, Kitahara A, Saji H, Murachi T, Kannagi R. Platelet factor XIII is activated by calpain. Biochem Biophys Res Commun 1987; 144: 484-90.
  • 2 Barnes R N, Walton P L, Griffin M. Effect of platelet activation on transglutaminase activity. Biochem Soc Trans 1985; 23: 227-8.
  • 3 Beckerle M C, O’Halloran T, Burridge K. Demonstration of a relationship between talin and P235, a major substrate of the calcium-dependent protease in platelets. J Cell Biochem 1986; 30: 259-70.
  • 4 Cohen I, Glaser T, Veis A, Bruner-Lorand J. Ca2+-dependent cross-linking processes in human platelets. Biochim Biophys Acta 1981; 676: 137-47.
  • 5 Collier N C, Wang K. Purification and properties of human platelet P235. A high molecular weight protein substrate of endogenous calcium-activated protease(s). J Biol Chem 1982; 257: 6937-43.
  • 6 Collier N C, Wang K. Human platelet P235: a high Mr protein which restricts the length of actin filaments. FEBS Lett 1982; 143: 205-10.
  • 7 Davies P J A, Davies D R, Levitzki A, Maxfield F R, Milhaud P, Willingham M C, Pastan I H. Transglutaminase is essential in receptor-mediated endocytosis of α2-macroglobulin and polypeptide hormones. Nature 1980; 283: 162-3.
  • 8 Feinstein M B, Sha’afi R I. Role of calcium in arachidonic acid metabolism and in the actions of arachidonic acid-derived metabolites. In: Calcium and Cell Function. Cheung W Y. (ed). 4th Ed. New York: Academic Press; 1983: 337-76.
  • 9 Folk J E, Cole P W. Identification of a functional cysteine essential for the activity of guinea pig liver transglutaminase. J Biol Chem 1966; 241: 3238-40.
  • 10 Fox J E B, Goll D E, Reynolds C C, Phillips D R. Identification of two proteins (actinbinding protein and P235) that are hydrolyzed by endogenous Ca2+-dependent protease during platelet aggregation. J Biol Chem 1985; 260: 1060-6.
  • 11 Fox J E B, Reynolds C C, Phillips D R. Calcium-dependent proteolysis occurs during platelet aggregation. J Biol Chem 1983; 258: 9973-81.
  • 12 Gache Y, Landon F, Touitou H, Olomucki A. Susceptibility of platelet a-actinin to a Ca2+-activated neutral protease. Biochem Biophys Res Commun 1984; 124: 877-81.
  • 13 Gerrard J M, Schollmeyer J V, Phillips D R, White J G. α-Actinin deficiency in thrombasthenia. Possible identity of α-actinin and glycoprotein III. Am J Pathol 1979; 94: 509-28.
  • 14 Gopalakrishna R, Barsky S H. Hydrophobic association of calpains with subcellular organelles. Compartmentalization of calpains and the endogenous inhibitor calpastatin in tissues. J Biol Chem 1986; 261: 13936-42.
  • 15 Grundmann U, Amann E, Zettlemeissl G, Küpper H A. Characterization of cDNA coding for human factor XIIIa. Proc Natl Acad Sci 1986; 83: 8024-8.
  • 16 Hartwig J H, Stossel T P. Isolation and properties of actin, myosin, and a new actin-binding protein in rabbit alveolar macrophages. J Biol Chem 1975; 250: 5696-705.
  • 17 Hatanaka M, Yoshimura N, Murakami T, Kannagi R, Murachi T. Evidence for membrane-associated calpain I in human erythrocytes. Detection by an immunoelectrophoretic blotting method using monospecific antibody. Biochemistry 1984; 23: 3272-5.
  • 18 Holbrook J J, Cooke R D, Kingston I B. The amino acid sequence around the reactive cysteine residue in human plasma factor XIII. Biochem J 1973; 135: 901-3.
  • 19 Ichinose A, Hendrickson L E, Fujikawa K, Davie E W. Amino acid sequence of the subunit of human factor XIII. Biochemistry 1986; 25: 6900-6.
  • 20 Kaibuchi K, Takai Y, Sawamura M, Hoshijima M, Fujikura T, Nishizuka Y. Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J Biol Chem 1983; 258: 6701-4.
  • 21 Kambayashi J, Kajiwara Y, Sakon M, Ohshiro T, Mori T. Possible participation of calpain in myosin light chain phosphorylation of human platelets. Biochem Int 1986; 13: 571-8.
  • 22 Kannagi R, Koizumi K, Masuda T. Limited hydrolysis of platelet membrane phospholipids on the proposed phospholipase-susceptible domain in platelet membranes. J Biol Chem 1981; 256: 1177-84.
  • 23 Kannagi R, Sakihama T, Murachi T. Proposal of the double regulation mechanism for the action of calpain. In: Cysteine Proteinases and Their Inhibitors. Turk V. (ed). Berlin: de Gruyter; 1986: 339-57.
  • 24 Kishimoto A, Takai Y, Mori T, Kikkawa U, Nishizuka Y. Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J Biol Chem 1980; 255: 2273-6.
  • 25 Kitahara A, Ohtsuki H, Kirihata Y, Yamagata Y, Takano E, Kannagi R, Murachi T. Selective localization of calpain I (the low-Ca2+-binding requiring form of Ca2+-dependent cysteine proteinase) in B-cells of human pancreatic islets. FEBS Lett 1985; 184: 120-4.
  • 26 Kitahara A, Takano E, Ohtsuki H, Kirihata Y, Yamagata Y, Kannagi R, Murachi T. Reversed distribution of calpains and calpastatin in human pituitary gland and selective localization of calpastatin in adrenocorticotropin-producing cells as demonstrated by immunohistochemistry. J Clin Endocrinol Metab 1986; 63: 343-8.
  • 27 Kosaki G, Tsujinaka T, Kambayashi J-I, Morimoto K, Yamamoto K, Yamagami K, Sobue K, Kakiuchi S. Specific cleavage of calmodulin-binding proteins by low Ca2+-requiring form of Ca2+-activated neutral protease in human platelets. Biochem Int 1983; 06: 767-75.
  • 28 Kunicki T J, Montgomery R R, Schulleck J. Cleavage of human von Willebrand factor by platelet calcium-activated protease. Blood 1985; 65: 352-6.
  • 29 Levitzki A, Willingham M, Pastan I. Evidence for participation of transglutaminase in receptor-mediated endocytosis. Proc Natl Acad Sci 1980; 77: 2706-10.
  • 30 Loland L, Conrad S M. Transglutaminases. Mol Cell Biochem 1984; 58: 9-35.
  • 31 Lopaciuk S, Lovette K M, MeDonagh J, Chuang H Y K, MeDonagh Jr R P. Subcellular distribution of fibrinogen and factor XIII in human blood platelets. Thromb Res 1976; 08: 453-65.
  • 32 Low M G, Carroll R C, Weglicki W B. Multiple forms of phosphoinositide-specific phospholipase C of different relative molecular masses in animal tissues. Evidence for modification of the platelet enzyme by Ca2+-dependent proteinase. Biochem J 1984; 221: 813-20.
  • 33 Lucas R C, Detwiler T C, Stracher A. The identification and isolation of a high molecular weight (270,000 dalton) actin-binding protein from human platelets. J Cell Biol 1976; 70: 259a.
  • 34 Lucas R C, Lawrence J J, Stracher A. Stimulation-induced appearance of a Ca-dependent proteolytic activity on the surface of platelets and the subsequent cleavage of platelet band 2. J Cell Biol 1979; 83: 77a.
  • 35 Lynch G, Baudry M. The biochemistry of memory: a new and specific hypothesis. Science 1984; 224: 1057-63.
  • 36 MeDonagh J, MeDonagh Jr R P, Delage J M, Wagner R H. Factor XIII in human plasma and platelets. J Clin Invest 1969; 48: 940-6.
  • 37 McGowan E B, Ding A, Detwiler T C. Correlation of thrombin-induced glycoprotein V hydrolysis and platelet activation. J Biol Chem 1983; 258: 11243-8.
  • 38 McGowan E B, Yeo K-T, Detwiler T C. The action of calcium-dependent protease on platelet surface glycoproteins. Arch Biochem Biophys 1983; 227: 287-301.
  • 39 Melloni E, Pontremoli S, Michetti M, Sacco O, Sparatore B, Salamino F, Horecker B L. Binding of protein kinase C to neutrophil membranes in the presence of Ca2+ and its activation by a Ca2+-requiring proteinase. Proc Natl Acad Sci 1985; 82: 6435-9.
  • 40 Murachi T. Intracellular Ca2+ protease and its inhibitor protein: Calpain and calpastatin. In: Calcium and Cell Function. Cheung W Y. (ed). 4th Ed. New York: Academic Press; 1983: 377-405.
  • 41 Murachi T, Kannagi R. Calpain and calpastatin: biochemical and immunohistochemical distribution studies in various tissues. In: The Biological Role of Proteinases and Their Inhibitors in Skin. Ogawa H. (ed). Tokyo: University of Tokyo Press; 1985: 95-104.
  • 42 Murachi T, Tanaka K, Hatanaka M, Murakami T. Intracellular Ca2+-dependent protease (calpain) and its high-molecular-weight endogenous inhibitor (calpastatin). Adv Enzyme Regul 1981; 19: 407-24.
  • 43 Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 1984; 308: 693-8.
  • 44 O’Halloran T, Beckerle M C, Burridge K. Identification of talin as a major cytoplasmic protein implicated in platelet activation. Nature 1985; 317: 449-51.
  • 45 Ohno S, Emori Y, Imajoh S, Kawasaki J, Kisaragi M, Suzuki K. Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein?. Nature 1984; 312: 566-70.
  • 46 Okita J R, Pidard D, Newman P J, Montgomery R R, Kunicki T J. On the association of glycoprotein lb and actin-binding protein in human platelets. J Cell Biol 1985; 100: 317-21.
  • 47 Phillips D R, Jakabova M. Ca2+-dependent protease in human platelets. Specific clear-age of platelet polypeptides in the presence of added Ca2+ . J Biol Chem 1977; 252: 5602-5.
  • 48 Pontremoli S, Melloni E. Extralysosomal protein degradation. Ann Rev Biochem 1986; 55: 455-81.
  • 49 Rittenhouse S E. Human platelets contain phospholipase C that hydrolyzes polyphosphoinositides (phosphomonoesterase/calcium). Proc Natl Acad Sci 1983; 80: 5417-20.
  • 50 Rittenhouse S, Deykin D. Release and metabolism of arachidonate in human platelets. In: Platelets in Biology and Pathology 2. Gordon J L. (ed). Amsterdam: Elsevier/ North-Holland Biomedical Press; 1981: 349-71.
  • 51 Sakihama T, Kakidani H, Zenita K, Yumoto N, Kikuchi T, Sasaki T, Kannagi R, Nakanishi S, Ohmori M, Takio K, Titani K, Murachi T. A putative Ca2+-binding protein: structure of the light subunit of porcine calpain elucidated by molecular cloning and protein sequence analysis. Proc Natl Acad Sci 1985; 82: 6075-9.
  • 52 Schmaier A H, Smith P M, Purson D, White J G, Colman R W. High molecular weight kininogen: localization in the unstimulated and activated platelet and activation by a platelet calpain(s). Blood 1986; 67: 119-30.
  • 53 Schollmeyer J V, Rao J H R, White J G. A platelet actin-binding protein. Circulation 1976; 54: 11-197.
  • 54 Shiba E, Tsujinaka T, Kambayashi J, Kosaki G. Purification and characterization of Ca2+-activated neutral protease inhibitor from human platelets. Thromb Res 1983; 32: 207-14.
  • 55 Shigeta K, Yumoto N, Murachi T. Fragmentation of a 70000-dalton calpastatin in molecule upon its complex formation with calpain. Biochem Intern 1984; 09: 327-33.
  • 56 Takahashi N, Takahashi Y, Putnam F. Primary structure of blood coagulation factor XHIa (fibrinoligase, transglutaminase) from human placenta. Proc Natl Acad Sci USA 1986; 83: 8019-23.
  • 57 Takano E, Kitahara A, Sasaki T, Kannagi R, Murachi T. Two different molecular species of pig calpastatin. Structural and functional relationship between 107 kDa and 68 kDa molecules. Biochem J 1986; 235: 97-102.
  • 58 Takano E, Maki M, Hatanaka M, Mori H, Zenita K, Sakihama T, Kannagi R, Marti T, Titani K, Murachi T. Evidence for the repetitive domain structure of pig calpastatin as demonstrated by cloning of complementary DNA. FEBS Lett 1986; 208: 199-202.
  • 59 Takano E, Murachi T. Purification and some properties of human erythrocyte calpastatin. J Biochem 1982; 92: 2021-8.
  • 60 Takano E, Yumoto N, Kannagi R, Murachi T. Molecular diversity of calpastatin in mammalian organs. Biochem Biophys Res Commun 1984; 122: 912-7.
  • 61 Tapley P M, Murray A W. Modulation of Ca2+-activated, phospholipid-dependent protein kinase in platelets treated with a tumor-promoting phorbol ester. Biochem Biophys Res Commun 1984; 122: 158-64.
  • 62 Tapley P M, Murray A W. Platelet Ca2+-activated, phospholipid-dependent protein kinase: evidence for proteolytic activation of the enzyme in cells treated with phospholipase C. Biochem Biophys Res Commun 1984; 118: 835-41.
  • 63 Truglia J A, Stracher A. Purification and characterization of a calcium-dependent sulfhydryl protease from human platelets. Biochem Biophys Res Commun 1981; 100: 814-22.
  • 64 Tsujinaka T, Shiba E, Kambayashi J-I, Kosaki G. Purification and characterization of a low calcium requiring form of Ca2+-activated neutral protease from human platelets. Biochem Int 1983; 06: 71-80.
  • 65 Tsukada T. Factor XIII and transamidase activities in human blood platelets. Acta Haem Jap 1977; 40: 984-94.
  • 66 Yamamoto K, Kosaki G, Suzuki K, Tanoue K, Yamazaki H. Cleavage site of calcium-dependent protease in human platelet membrane glycoprotein Ib. Thromb Res 1986; 43: 41-55.
  • 67 Yoshida N, Weksler B, Nachman R. Purification of human platelet calcium-activated protease. Effect on platelet and endothelium function. J Biol Chem 1983; 258: 7168-74.
  • 68 Yoshimura N, Hatanaka M, Kitahara A, Kawaguchi N, Murachi T. Intracellular localization of two distinct Ca2+-proteases (calpain I and calpain II) as demonstrated by using discriminative antibodies. J Biol Chem 1984; 259: 9847-53.