Hamostaseologie 2019; 39(02): 140-151
DOI: 10.1055/s-0038-1675356
Review Article
Georg Thieme Verlag KG Stuttgart · New York

New Insights into Platelet Signalling Pathways by Functional and Proteomic Approaches

Kerstin Jurk
1   Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes-Gutenberg University Mainz, Mainz, Germany
,
Ulrich Walter
1   Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes-Gutenberg University Mainz, Mainz, Germany
› Author Affiliations
Further Information

Publication History

30 June 2018

05 September 2018

Publication Date:
19 November 2018 (online)

Abstract

As circulating sentinels of vascular integrity, platelets act as crucial haemostatic cells as well as important inflammatory and immune cells, whereas under pathological conditions platelets drive thrombotic as well as non-thrombotic diseases related to chronic inflammation. In addition, platelets serve as an important cellular model to study the biology and pharmacology of signal transduction pathways. Platelet inhibition and activation responses are mediated by multiple signalling networks, which are tightly regulated by balanced catalysis of protein phosphorylation and dephosphorylation through protein kinases and protein phosphatases, respectively. However, we are only at the beginning of understanding the complexity of interacting signalling pathways and their impact on platelet function. Here, we review current functional and proteomic approaches that lead to novel concepts of understanding the proteome, kinome and phosphatome of human platelets. A more in-depth understanding of both protein kinases and protein phosphatases using human platelets will contribute to evaluate their further diagnostic and therapeutic potential in inflammation- and immune-mediated diseases.

Zusammenfassung

Als zentrale Hämostasezellen kontrollieren Thrombozyten die vaskuläre Integrität und steuern chronische Entzündungsprozesse, die zu thrombotischen aber auch Thrombose unabhängigen Erkrankungen führen. Zudem stellen Thrombozyten ein wichtiges zelluläres Model dar, um die Biologie und Pharmakologie von Signaltransduktionswegen zu untersuchen. Multiple Signalnetzwerke bestimmen hemmende und aktivierende Prozesse der Thrombozytenfunktion, die durch eine balancierte Katalyse von Proteinkinase-abhängiger Phosphorylierung und Proteinphosphatase-abhängiger Dephosphorylierung reguliert werden. Dennoch stehen wir erst am Anfang, die Komplexität der interagierenden Signalwege und ihre Bedeutung für die Thrombozytenfunktion zu verstehen. Diese Übersicht stellt aktuelle funktionelle und proteombasierte Konzepte vor, die zu einem neuen Verständnis des Proteoms, Kinoms und Phosphatoms humaner Thrombozyten führen. Ein besseres Verständnis von Proteinkinasen und Proteinphosphatasen in humanen Thrombozyten trägt entscheidend zur Beurteilung ihres diagnostischen und therapeutischen Potenzials für entzündungs- und immunvermittelte Erkrankungen bei.

 
  • References

  • 1 Versteeg HH, Heemskerk JWM, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev 2013; 93 (01) 327-358
  • 2 Jurk K. Analysis of platelet function and dysfunction. Hamostaseologie 2015; 35 (01) 60-72
  • 3 Séverin S, Pollitt AY, Navarro-Nuñez L. , et al. Syk-dependent phosphorylation of CLEC-2: a novel mechanism of hem-immunoreceptor tyrosine-based activation motif signaling. J Biol Chem 2011; 286 (06) 4107-4116
  • 4 Mócsai A, Ruland J, Tybulewicz VLJ. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010; 10 (06) 387-402
  • 5 Senis YA, Mazharian A, Mori J. Src family kinases: at the forefront of platelet activation. Blood 2014; 124 (13) 2013-2024
  • 6 Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res 2006; 99 (12) 1293-1304
  • 7 Makhoul S, Walter E, Pagel O. , et al. Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets. Nitric Oxide 2018; 76: 71-80
  • 8 Kunapuli SP, Bhavanasi D, Kostyak JC, Manne BK. Platelet signaling: protein phosphorylation. In: Gresele P, Kleiman NS, Lopez JA, Page CP. , eds. Platelets in Thrombotic and Non-thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: An Update. Cham, Switzerland: Springer International Publishing; 2017: 297-308
  • 9 Kelley-Hickie LP, O'Keeffe MB, Reid HM, Kinsella BT. Homologous desensitization of signalling by the alpha (alpha) isoform of the human thromboxane A2 receptor: a specific role for nitric oxide signalling. Biochim Biophys Acta 2007; 1773 (06) 970-989
  • 10 Gibbins JM. The negative regulation of platelet function: extending the role of the ITIM. Trends Cardiovasc Med 2002; 12 (05) 213-219
  • 11 Bye AP, Unsworth AJ, Gibbins JM. Platelet signaling: a complex interplay between inhibitory and activatory networks. J Thromb Haemost 2016; 14 (05) 918-930
  • 12 Lavergne M, Janus-Bell E, Schaff M, Gachet C, Mangin PH. Platelet integrins in tumor metastasis: do they represent a therapeutic target?. Cancers (Basel) 2017; 9 (10) E133
  • 13 Elaskalani O, Berndt MC, Falasca M, Metharom P. Targeting platelets for the treatment of cancer. Cancers (Basel) 2017; 9 (07) E94
  • 14 Born GVR. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962; 194 (4832): 927-929
  • 15 Brass LF, Ma P, Tomaiuolo M, Diamond SL, Stalker TJ. A systems approach to the platelet signaling network and the hemostatic response to injury. In: Gresele Paolo, Kleiman NS, Lopez JA, Page CP. , eds. Platelets in Thrombotic and Non-thrombotic. Disorders: Springer; 2017: 367-378
  • 16 Sutherland EW. On the biological role of cyclic AMP. JAMA 1970; 214 (07) 1281-1288
  • 17 Moncada S, Higgs EA, Vane JR. Human arterial and venous tissues generate prostacyclin (prostaglandin x), a potent inhibitor of platelet aggregation. Lancet 1977; 1 (8001): 18-20
  • 18 Mellion BT, Ignarro LJ, Ohlstein EH, Pontecorvo EG, Hyman AL, Kadowitz PJ. Evidence for the inhibitory role of guanosine 3′, 5′-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood 1981; 57 (05) 946-955
  • 19 Eigenthaler M, Ullrich H, Geiger J. , et al. Defective nitrovasodilator-stimulated protein phosphorylation and calcium regulation in cGMP-dependent protein kinase-deficient human platelets of chronic myelocytic leukemia. J Biol Chem 1993; 268 (18) 13526-13531
  • 20 Smolenski A. Novel roles of cAMP/cGMP-dependent signaling in platelets. J Thromb Haemost 2012; 10 (02) 167-176
  • 21 Kikkawa U, Nishizuka Y. The role of protein kinase C in transmembrane signalling. Annu Rev Cell Biol 1986; 2: 149-178
  • 22 Chari R, Kim S, Murugappan S, Sanjay A, Daniel JL, Kunapuli SP. Lyn, PKC-delta, SHIP-1 interactions regulate GPVI-mediated platelet-dense granule secretion. Blood 2009; 114 (14) 3056-3063
  • 23 Collett MS, Purchio AF, Erikson RL. Avian sarcoma virus-transforming protein, pp60src shows protein kinase activity specific for tyrosine. Nature 1980; 285 (5761): 167-169
  • 24 Golden A, Nemeth SP, Brugge JS. Blood platelets express high levels of the pp60c-src-specific tyrosine kinase activity. Proc Natl Acad Sci U S A 1986; 83 (04) 852-856
  • 25 Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 2002; 298 (5600): 1912-1934
  • 26 Chen MJ, Dixon JE, Manning G. Genomics and evolution of protein phosphatases. Sci Signal 2017; 10 (474) eaag1796
  • 27 Burkhart JM, Vaudel M, Gambaryan S. , et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012; 120 (15) e73-e82
  • 28 Burkhart JM, Gambaryan S, Watson SP. , et al. What can proteomics tell us about platelets?. Circ Res 2014; 114 (07) 1204-1219
  • 29 Loroch S, Trabold K, Gambaryan S. , et al. Alterations of the platelet proteome in type I Glanzmann thrombasthenia caused by different homozygous delG frameshift mutations in ITGA2B. Thromb Haemost 2017; 117 (03) 556-569
  • 30 Kiouptsi K, Gambaryan S, Walter E, Walter U, Jurk K, Reinhardt C. Hypoxia impairs agonist-induced integrin αIIbβ3 activation and platelet aggregation. Sci Rep 2017; 7 (01) 7621
  • 31 Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991; 64 (04) 693-702
  • 32 Séverin S, Nash CA, Mori J. , et al. Distinct and overlapping functional roles of Src family kinases in mouse platelets. J Thromb Haemost 2012; 10 (08) 1631-1645
  • 33 Kossmann S, Lagrange J, Jäckel S. , et al. Platelet-localized FXI promotes a vascular coagulation-inflammatory circuit in arterial hypertension. Sci Transl Med 2017; 9 (375) eaah4923
  • 34 Kleinschmidt EG, Schlaepfer DD. Focal adhesion kinase signaling in unexpected places. Curr Opin Cell Biol 2017; 45: 24-30
  • 35 Tautz L, Senis YA, Oury C, Rahmouni S. Perspective: tyrosine phosphatases as novel targets for antiplatelet therapy. Bioorg Med Chem 2015; 23 (12) 2786-2797
  • 36 Senis YA, Barr AJ. Targeting receptor-type protein tyrosine phosphatases with biotherapeutics: is outside-in better than inside-out?. Molecules 2018; 23 (03) E569
  • 37 Zahedi RP, Lewandrowski U, Wiesner J. , et al. Phosphoproteome of resting human platelets. J Proteome Res 2008; 7 (02) 526-534
  • 38 Beck F, Geiger J, Gambaryan S. , et al. Time-resolved characterization of cAMP/PKA-dependent signaling reveals that platelet inhibition is a concerted process involving multiple signaling pathways. Blood 2014; 123 (05) e1-e10
  • 39 Beck F, Geiger J, Gambaryan S. , et al. Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition. Blood 2017; 129 (02) e1-e12
  • 40 Reiss C, Mindukshev I, Bischoff V. , et al. The sGC stimulator Riociguat inhibits platelet function in washed platelets but not in whole blood. Br J Pharmacol 2015; 172 (21) 5199-5210
  • 41 Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 2009; 9 (08) 537-549
  • 42 Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004; 68 (02) 320-344
  • 43 Adam F, Kauskot A, Rosa JP, Bryckaert M. Mitogen-activated protein kinases in hemostasis and thrombosis. J Thromb Haemost 2008; 6 (12) 2007-2016
  • 44 Lannan KL, Sahler J, Kim N. , et al. Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles. Front Immunol 2015; 6: 48
  • 45 Kauskot A, Adam F, Mazharian A. , et al. Involvement of the mitogen-activated protein kinase c-Jun NH2-terminal kinase 1 in thrombus formation. J Biol Chem 2007; 282 (44) 31990-31999
  • 46 Adam F, Kauskot A, Nurden P. , et al. Platelet JNK1 is involved in secretion and thrombus formation. Blood 2010; 115 (20) 4083-4092
  • 47 Chen K, Febbraio M, Li W, Silverstein RL. A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein. Circ Res 2008; 102 (12) 1512-1519
  • 48 Silverstein RL, Li W, Park YM, Rahaman SO. Mechanisms of cell signaling by the scavenger receptor CD36: implications in atherosclerosis and thrombosis. Trans Am Clin Climatol Assoc 2010; 121: 206-220
  • 49 Naik MU, Patel P, Derstine R. , et al. Ask1 regulates murine platelet granule secretion, thromboxane A2 generation, and thrombus formation. Blood 2017; 129 (09) 1197-1209
  • 50 Yue M, Luo D, Yu S. , et al. Misshapen/NIK-related kinase (MINK1) is involved in platelet function, hemostasis, and thrombus formation. Blood 2016; 127 (07) 927-937
  • 51 Fan X, Wang C, Shi P. , et al. Platelet MEKK3 regulates arterial thrombosis and myocardial infarct expansion in mice. Blood Adv 2018; 2 (12) 1439-1448
  • 52 Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2018; 96: 98-134
  • 53 Takai A, Eto M, Hirano K, Takeya K, Wakimoto T, Watanabe M. Protein phosphatases 1 and 2A and their naturally occurring inhibitors: current topics in smooth muscle physiology and chemical biology. J Physiol Sci 2018; 68 (01) 1-17
  • 54 Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 2006; 7 (11) 833-846
  • 55 Senis YA. Protein-tyrosine phosphatases: a new frontier in platelet signal transduction. J Thromb Haemost 2013; 11 (10) 1800-1813
  • 56 Kidger AM, Keyse SM. The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs). Semin Cell Dev Biol 2016; 50: 125-132
  • 57 Musumeci L, Kuijpers MJ, Gilio K. , et al. Dual-specificity phosphatase 3 deficiency or inhibition limits platelet activation and arterial thrombosis. Circulation 2015; 131 (07) 656-668
  • 58 Sangodkar J, Farrington CC, McClinch K, Galsky MD, Kastrinsky DB, Narla G. All roads lead to PP2A: exploiting the therapeutic potential of this phosphatase. FEBS J 2016; 283 (06) 1004-1024
  • 59 Sakon M, Kambayashi JI, Murata KH. The involvement of protein phosphatases in platelet activation. Platelets 1994; 5 (03) 130-134
  • 60 Hudák R, Vincze J, Csernoch L. , et al. The phosphatase inhibitor calyculin-a impairs clot retraction, platelet activation, and thrombin generation. BioMed Res Int 2017; 2017: 9795271
  • 61 Vigneron S, Robert P, Hached K. , et al. The master Greatwall kinase, a critical regulator of mitosis and meiosis. Int J Dev Biol 2016; 60 (7-8-9): 245-254
  • 62 Wlodarchak N, Xing Y. PP2A as a master regulator of the cell cycle. Crit Rev Biochem Mol Biol 2016; 51 (03) 162-184
  • 63 Millward TA, Zolnierowicz S, Hemmings BA. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci 1999; 24 (05) 186-191
  • 64 Junttila MR, Li SP, Westermarck J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 2008; 22 (04) 954-965
  • 65 Janssens V, Goris J, Van Hoof C. PP2A: the expected tumor suppressor. Curr Opin Genet Dev 2005; 15 (01) 34-41
  • 66 O'Connor CM, Perl A, Leonard D, Sangodkar J, Narla G. Therapeutic targeting of PP2A. Int J Biochem Cell Biol 2018; 96: 182-193
  • 67 Kauko O, Westermarck J. Non-genomic mechanisms of protein phosphatase 2A (PP2A) regulation in cancer. Int J Biochem Cell Biol 2018; 96: 157-164
  • 68 Berndt N, Karim RM, Schönbrunn E. Advances of small molecule targeting of kinases. Curr Opin Chem Biol 2017; 39: 126-132
  • 69 Gratacap MP, Martin V, Valéra MC. , et al. The new tyrosine-kinase inhibitor and anticancer drug dasatinib reversibly affects platelet activation in vitro and in vivo. Blood 2009; 114 (09) 1884-1892
  • 70 Quintás-Cardama A, Han X, Kantarjian H, Cortes J. Tyrosine kinase inhibitor-induced platelet dysfunction in patients with chronic myeloid leukemia. Blood 2009; 114 (02) 261-263
  • 71 Levade M, Severin S, Gratacap MP, Ysebaert L, Payrastre B. Targeting kinases in cancer therapies: adverse effects on blood platelets. Curr Pharm Des 2016; 22 (16) 2315-2322
  • 72 Quek LS, Bolen J, Watson SP. A role for Bruton's tyrosine kinase (Btk) in platelet activation by collagen. Curr Biol 1998; 8 (20) 1137-1140
  • 73 Levade M, David E, Garcia C. , et al. Ibrutinib treatment affects collagen and von Willebrand factor-dependent platelet functions. Blood 2014; 124 (26) 3991-3995
  • 74 Bye AP, Unsworth AJ, Vaiyapuri S, Stainer AR, Fry MJ, Gibbins JM. Ibrutinib inhibits platelet integrin alphaiibbeta3 outside-in signaling and thrombus stability but not adhesion to collagen. Arterioscler Thromb Vasc Biol 2015; 35 (11) 2326-2335
  • 75 Shatzel JJ, Olson SR, Tao DL, McCarty OJT, Danilov AV, DeLoughery TG. Ibrutinib-associated bleeding: pathogenesis, management and risk reduction strategies. J Thromb Haemost 2017; 15 (05) 835-847
  • 76 Busygina K, Jamasbi J, Seiler T. , et al. Oral Bruton tyrosine kinase inhibitors selectively block atherosclerotic plaque-triggered thrombus formation in humans. Blood 2018; 131 (24) 2605-2616
  • 77 Bussel J, Arnold DM, Grossbard E. , et al. Fostamatinib for the treatment of adult persistent and chronic immune thrombocytopenia: results of two phase 3, randomized, placebo-controlled trials. Am J Hematol 2018; 93 (07) 921-930
  • 78 Subramaniam S, Jurk K, Hobohm L. , et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood 2017; 129 (16) 2291-2302