Neuropediatrics 2020; 51(02): 089-104
DOI: 10.1055/s-0039-3400987
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Tone Reduction and Physical Therapy: Strengthening Partners in Treatment of Children with Spastic Cerebral Palsy

Inge Franki
1   Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
2   Cerebral Palsy Clinic, University Hospitals Leuven—Campus Pellenberg, Leuven, Belgium
,
Lynn Bar-On
3   Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
,
Guy Molenaers
1   Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
4   Clinical Motion Analysis Laboratory, University Hospitals Leuven—Campus Pellenberg, Leuven, Belgium
5   Department of Orthopedics, University Hospital Leuven, Leuven, Belgium
,
Anja Van Campenhout
1   Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
4   Clinical Motion Analysis Laboratory, University Hospitals Leuven—Campus Pellenberg, Leuven, Belgium
5   Department of Orthopedics, University Hospital Leuven, Leuven, Belgium
,
Karen Craenen
2   Cerebral Palsy Clinic, University Hospitals Leuven—Campus Pellenberg, Leuven, Belgium
,
Kaat Desloovere
3   Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
4   Clinical Motion Analysis Laboratory, University Hospitals Leuven—Campus Pellenberg, Leuven, Belgium
,
Hilde Feys
3   Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
,
Petra Pauwels
2   Cerebral Palsy Clinic, University Hospitals Leuven—Campus Pellenberg, Leuven, Belgium
,
Jos De Cat
2   Cerebral Palsy Clinic, University Hospitals Leuven—Campus Pellenberg, Leuven, Belgium
,
Els Ortibus
1   Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
2   Cerebral Palsy Clinic, University Hospitals Leuven—Campus Pellenberg, Leuven, Belgium
6   Centre for Developmental Disabilities, Leuven, Belgium
› Author Affiliations
Further Information

Publication History

30 April 2019

16 October 2019

Publication Date:
27 November 2019 (online)

Abstract

The aim of this paper is to provide a clinically applicable overview of different tone reducing modalities and how these can interact with or augment concurrent physical therapy (PT). Botulinum toxin (BoNT), oral tone-regulating medication, intrathecal baclofen (ITB), and selective dorsal rhizotomy are discussed within a physiotherapeutic context and in view of current scientific evidence. We propose clinical reasoning strategies to identify treatment goals as well as the appropriate and corresponding treatment interventions. Instrumented measurement of spasticity, standardized clinical assessment, and 3D clinical motion analysis are scientifically sound tools to help select the appropriate treatment and, when needed, to selectively target or spare individual muscles. In addition, particular attention is given to strength training as a necessary tool to tackle muscle weakness associated with specific modalities of tone reduction. More research is needed to methodologically assess the long-term effectiveness of such individualized tone treatment, optimize parameters such as medication dosage, and gain more insight into the kind of PT techniques that are essential in conjunction with tone reduction.

 
  • References

  • 1 Rosenbaum P, Paneth N, Leviton A. , et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl 2007; 109: 8-14
  • 2 Sellier E, Platt MJ, Andersen GL, Krägeloh-Mann I, De La Cruz J, Cans C. ; Surveillance of Cerebral Palsy Network. Decreasing prevalence in cerebral palsy: a multi-site European population-based study, 1980 to 2003. Dev Med Child Neurol 2016; 58 (01) 85-92
  • 3 Christine C, Dolk H, Platt MJ, Colver A, Prasauskiene A, Krägeloh-Mann I. ; SCPE Collaborative Group. Recommendations from the SCPE collaborative group for defining and classifying cerebral palsy. Dev Med Child Neurol Suppl 2007; 109: 35-38
  • 4 Lance JW. Symposium synopsis. In: Feldman RG, Young RR, Koella WP. , eds. Spasticity: Disordered Motor Control. Chicago, IL: Year Book Medical Publishers; 1980: 485-495
  • 5 Bar-On L, Aertbeliën E, Wambacq H. , et al. A clinical measurement to quantify spasticity in children with cerebral palsy by integration of multidimensional signals. Gait Posture 2013; 38 (01) 141-147
  • 6 McKearnan KA, Kieckhefer GM, Engel JM, Jensen MP, Labyak S. Pain in children with cerebral palsy: a review. J Neurosci Nurs 2004; 36 (05) 252-259
  • 7 Mckinnon CT, Meehan EM, Harvey AR, Antolovich GC, Morgan PE. Prevalence and characteristics of pain in children and young adults with cerebral palsy: a systematic review. Dev Med Child Neurol 2019; 61 (03) 305-314
  • 8 Chalkiadis GA, Sommerfield D, Low J. , et al. Comparison of lumbar epidural bupivacaine with fentanyl or clonidine for postoperative analgesia in children with cerebral palsy after single-event multilevel surgery. Dev Med Child Neurol 2016; 58 (04) 402-408
  • 9 Beckung E, Hagberg G. Neuroimpairments, activity limitations, and participation restrictions in children with cerebral palsy. Dev Med Child Neurol 2002; 44 (05) 309-316
  • 10 Ross SA, Engsberg JR. Relationships between spasticity, strength, gait, and the GMFM-66 in persons with spastic diplegia cerebral palsy. Arch Phys Med Rehabil 2007; 88 (09) 1114-1120
  • 11 Bartlett DJ, Chiarello LA, McCoy SW. , et al. Determinants of gross motor function of young children with cerebral palsy: a prospective cohort study. Dev Med Child Neurol 2014; 56 (03) 275-282
  • 12 Chen CL, Chen CY, Chen HC, Liu WY, Shen IH, Lin KC. Potential predictors of changes in gross motor function during various tasks for children with cerebral palsy: a follow-up study. Res Dev Disabil 2013; 34 (01) 721-728
  • 13 Wright FV, Rosenbaum PL, Goldsmith CH, Law M, Fehlings DL. How do changes in body functions and structures, activity, and participation relate in children with cerebral palsy?. Dev Med Child Neurol 2008; 50 (04) 283-289
  • 14 Geertsen SS, Kirk H, Nielsen JB. Impaired ability to suppress excitability of antagonist motoneurons at onset of dorsiflexion in adults with cerebral palsy. Neural Plast 2018; 2018: 1265143
  • 15 Baude M, Nielsen JB, Gracies JM. The neurophysiology of deforming spastic paresis: a revised taxonomy. Ann Phys Rehabil Med 2018 ;pii: S1877-0657(18)31479-9. Doi: 10.1016/j.rehab.2018.10.004
  • 16 Petersen TH, Kliim-Due M, Farmer SF, Nielsen JB. Childhood development of common drive to a human leg muscle during ankle dorsiflexion and gait. J Physiol 2010; 588 (Pt 22): 4387-4400
  • 17 Park ES, Park CI, Kim DY, Kim YR. The effect of spasticity on cortical somatosensory-evoked potentials: changes of cortical somatosensory-evoked potentials after botulinum toxin type A injection. Arch Phys Med Rehabil 2002; 83 (11) 1592-1596
  • 18 Ward R, Reynolds JE, Bear N, Elliott C, Valentine J. What is the evidence for managing tone in young children with, or at risk of developing, cerebral palsy: a systematic review. Disabil Rehabil 2017; 39 (07) 619-630
  • 19 Hoare B. Rationale for using botulinum toxin A as an adjunct to upper limb rehabilitation in children with cerebral palsy. J Child Neurol 2014; 29 (08) 1066-1076
  • 20 Strobl W, Theologis T, Brunner R. , et al. Best clinical practice in botulinum toxin treatment for children with cerebral palsy. Toxins (Basel) 2015; 7 (05) 1629-1648
  • 21 Heinen F, Desloovere K, Schroeder AS. , et al. The updated European Consensus 2009 on the use of botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol 2010; 14 (01) 45-66
  • 22 Heinen F, Molenaers G, Fairhurst C. , et al. European consensus table 2006 on botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol 2006; 10 (5-6): 215-225
  • 23 Papavasiliou AS. Management of motor problems in cerebral palsy: a critical update for the clinician. Eur J Paediatr Neurol 2009; 13 (05) 387-396
  • 24 Franki I, Desloovere K, De Cat J. , et al. The evidence-base for basic physical therapy techniques targeting lower limb function in children with cerebral palsy: a systematic review using the International Classification of Functioning, Disability and Health as a conceptual framework. J Rehabil Med 2012; 44 (05) 385-395
  • 25 Franki I, Desloovere K, De Cat J. , et al. The evidence-base for conceptual approaches and additional therapies targeting lower limb function in children with cerebral palsy: a systematic review using the International Classification of Functioning, Disability and Health as a conceptual framework. J Rehabil Med 2012; 44: 396-405
  • 26 Anttila H, Suoranta J, Malmivaara A, Mäkelä M, Autti-Rämö I. Effectiveness of physiotherapy and conductive education interventions in children with cerebral palsy: a focused review. Am J Phys Med Rehabil 2008; 87 (06) 478-501
  • 27 Morgan C, Darrah J, Gordon AM. , et al. Effectiveness of motor interventions in infants with cerebral palsy: a systematic review. Dev Med Child Neurol 2016; 58 (09) 900-909
  • 28 Graham HK, Aoki KR, Autti-Rämö I. , et al. Recommendations for the use of botulinum toxin type A in the management of cerebral palsy. Gait Posture 2000; 11 (01) 67-79
  • 29 Van Campenhout A, Bar-On L, Desloovere K, Molenaers G. Role of motor end plate-targeted botulinum toxin type A injections in children with cerebral palsyitle. Acta Orthop Belg 2015; 81 (02) 167-171
  • 30 Schroeder AS, Berweck S, Lee SH, Heinen F. Botulinum toxin treatment of children with cerebral palsy—a short review of different injection techniques. Neurotox Res 2006; 9 (2-3): 189-196
  • 31 Love SC, Novak I, Kentish M. , et al; Cerebral Palsy Institute. Botulinum toxin assessment, intervention and after-care for lower limb spasticity in children with cerebral palsy: international consensus statement. Eur J Neurol 2010; 17 (Suppl. 02) 9-37
  • 32 Molenaers G, Desloovere K, De Cat J. , et al. Single event multilevel botulinum toxin type A treatment and surgery: similarities and differences. Eur J Neurol 2001; 8 (Suppl. 05) 88-97
  • 33 Kahraman A, Seyhan K, Değer Ü, Kutlutürk S, Mutlu A. Should botulinum toxin A injections be repeated in children with cerebral palsy? A systematic review. Dev Med Child Neurol 2016; 58 (09) 910-917
  • 34 Desloovere K, Molenaers G, De Cat J. , et al. Motor function following multilevel botulinum toxin type A treatment in children with cerebral palsy. Dev Med Child Neurol 2007; 49 (01) 56-61
  • 35 Fleuren JF, Voerman GE, Erren-Wolters CV. , et al. Stop using the Ashworth scale for the assessment of spasticity. J Neurol Neurosurg Psychiatry 2010; 81 (01) 46-52
  • 36 Jang DH, Sung IY. The influence of physical therapy and anti-botulinum toxin antibody on the efficacy of botulinum toxin-A injections in children with spastic cerebral palsy. Dev Neurorehabil 2014; 17 (06) 414-419
  • 37 Williams SA, Elliott C, Valentine J, Gubbay A, Shipman P, Reid S. Combining strength training and botulinum neurotoxin intervention in children with cerebral palsy: the impact on muscle morphology and strength. Disabil Rehabil 2013; 35 (07) 596-605
  • 38 Fonseca Jr PR, Calhes Franco de Moura R, Galli M, Santos Oliveira C. Effect of physiotherapeutic intervention on the gait after the application of botulinum toxin in children with cerebral palsy: systematic review. Eur J Phys Rehabil Med 2018; 54 (05) 757-765
  • 39 Mathevon L, Bonan I, Barnais JL, Boyer F, Dinomais M. Adjunct therapies to improve outcomes after botulinum toxin in children: a systematic review. Ann Phys Rehabil Med 2019; 62 (04) 283-290
  • 40 Picelli A, Santamato A, Chemello E. , et al. Adjuvant therapies associated with botulinum toxin injection for managing spasticity: an overview of literature. Ann Phys Rehabil Med 2019; 62 (04) 291-296
  • 41 Lidman G, Nachemson A, Peny-Dahlstrand M, Himmelmann K. Botulinum toxin A injections and occupational therapy in children with unilateral spastic cerebral palsy: a randomized controlled trial. Dev Med Child Neurol 2015; 57 (08) 754-761
  • 42 Speth L, Janssen-Potten Y, Leffers P. , et al. Effects of botulinum toxin A and/or bimanual task-oriented therapy on upper extremity impairments in unilateral cerebral palsy: an explorative study. Eur J Paediatr Neurol 2015; 19 (03) 337-348
  • 43 Löwing K, Thews K, Haglund-Åkerlind Y, Gutierrez-Farewik EM. Effects of botulinum toxin-A and goal-directed physiotherapy in children with cerebral palsy GMFCS levels I & II. Phys Occup Ther Pediatr 2017; 37 (03) 268-282
  • 44 Read FA, Boyd RN, Barber LA. Longitudinal assessment of gait quality in children with bilateral cerebral palsy following repeated lower limb intramuscular botulinum toxin-A injections. Res Dev Disabil 2017; 68: 35-41
  • 45 Blaszczyk I, Foumani NP, Ljungberg C, Wiberg M. Questionnaire about the adverse events and side effects following botulinum toxin A treatment in patients with cerebral palsy. Toxins (Basel) 2015; 7 (11) 4645-4654
  • 46 Papavasiliou AS, Nikaina I, Foska K, Bouros P, Mitsou G, Filiopoulos C. Safety of botulinum toxin A in children and adolescents with cerebral palsy in a pragmatic setting. Toxins (Basel) 2013; 5 (03) 524-536
  • 47 Brandenburg JE, Krach LE, Gormley Jr ME. Use of rimabotulinum toxin for focal hypertonicity management in children with cerebral palsy with nonresponse to onabotulinum toxin. Am J Phys Med Rehabil 2013; 92 (10) 898-904
  • 48 Edwards P, Sakzewski L, Copeland L. , et al. Safety of botulinum toxin type A for children with nonambulatory cerebral palsy. Pediatrics 2015; 136 (05) 895-904
  • 49 Fortuna R, Horisberger M, Vaz MA, Herzog W. Do skeletal muscle properties recover following repeat onabotulinum toxin A injections?. J Biomech 2013; 46 (14) 2426-2433
  • 50 Fortuna R, Vaz MA, Youssef AR, Longino D, Herzog W. Changes in contractile properties of muscles receiving repeat injections of botulinum toxin (Botox). J Biomech 2011; 44 (01) 39-44
  • 51 Mathevon L, Michel F, Decavel P, Fernandez B, Parratte B, Calmels P. Muscle structure and stiffness assessment after botulinum toxin type A injection. A systematic review. Ann Phys Rehabil Med 2015; 58 (06) 343-350
  • 52 Hart DA, Fortuna R, Herzog W. Messenger RNA profiling of rabbit quadriceps femoris after repeat injections of botulinum toxin: evidence for a dynamic pattern without further structural alterations. Muscle Nerve 2018; 57 (03) 487-493
  • 53 Fortuna R, Vaz MA, Sawatsky A, Hart DA, Herzog W. A clinically relevant BTX-A injection protocol leads to persistent weakness, contractile material loss, and an altered mRNA expression phenotype in rabbit quadriceps muscles. J Biomech 2015; 48 (10) 1700-1706
  • 54 Schroeder AS, Ertl-Wagner B, Britsch S. , et al. Muscle biopsy substantiates long-term MRI alterations one year after a single dose of botulinum toxin injected into the lateral gastrocnemius muscle of healthy volunteers. Mov Disord 2009; 24 (10) 1494-1503
  • 55 Valentine J, Stannage K, Fabian V. , et al. Muscle histopathology in children with spastic cerebral palsy receiving botulinum toxin type A. Muscle Nerve 2016; 53 (03) 407-414
  • 56 Eek MN, Himmelmann K. No decrease in muscle strength after botulinum neurotoxin-A injection in children with cerebral palsy. Front Hum Neurosci 2016; 10: 506
  • 57 Lee M, Ko Y, Shin MM, Lee W. The effects of progressive functional training on lower limb muscle architecture and motor function in children with spastic cerebral palsy. J Phys Ther Sci 2015; 27 (05) 1581-1584
  • 58 Fehlings D, Novak I, Berweck S, Hoare B, Stott NS, Russo RN. ; Cerebral Palsy Institute. Botulinum toxin assessment, intervention and follow-up for paediatric upper limb hypertonicity: international consensus statement. Eur J Neurol 2010; 17 (Suppl. 02) 38-56
  • 59 Delgado MR, Hirtz D, Aisen M. , et al. Practice parameter: pharmacological treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review). Neurology 2010; 74: 336-343
  • 60 Calcaterra NE, Barrow JC. Classics in chemical neuroscience: diazepam (valium). ACS Chem Neurosci 2014; 5 (04) 253-260
  • 61 Appleton R, Sweeney A, Choonara I, Robson J, Molyneux E. Lorazepam versus diazepam in the acute treatment of epileptic seizures and status epilepticus. Dev Med Child Neurol 1995; 37 (08) 682-688
  • 62 Mathew A, Mathew MC. Bedtime diazepam enhances well-being in children with spastic cerebral palsy. Pediatr Rehabil 2005; 8 (01) 63-66
  • 63 Mathew A, Mathew MC, Thomas M, Antonisamy B. The efficacy of diazepam in enhancing motor function in children with spastic cerebral palsy. J Trop Pediatr 2005; 51 (02) 109-113
  • 64 Kalachnik JE, Hanzel TE, Sevenich R, Harder SR. Benzodiazepine behavioral side effects: review and implications for individuals with mental retardation. Am J Ment Retard 2002; 107 (05) 376-410
  • 65 Navarrete-Opazo AA, Gonzalez W, Nahuelhual P. Effectiveness of oral baclofen in the treatment of spasticity in children and adolescents with cerebral palsy. Arch Phys Med Rehabil 2016; 97 (04) 604-618
  • 66 van Doornik J, Kukke S, McGill K, Rose J, Sherman-Levine S, Sanger TD. Oral baclofen increases maximal voluntary neuromuscular activation of ankle plantar flexors in children with spasticity due to cerebral palsy. J Child Neurol 2008; 23 (06) 635-639
  • 67 Chyatte SB, Basmajian JV. Dantrolene sodium: long-term effects in severe spasticity. Arch Phys Med Rehabil 1973; 54 (07) 311-315
  • 68 Ford F, Bleck EE, Aptekar RG. , et al. Efficacy of dantrolene sodium in the treatment of spastic cerebral palsy. Dev Med Child Neurol 1976; 18: 770-783
  • 69 Joynt RL, Leonard Jr JA. Dantrolene sodium suspension in treatment of spastic cerebral palsy. Dev Med Child Neurol 1980; 22 (06) 755-767
  • 70 Badell A. The effect of medications that reduce spasticity in the management of cerebral palsy. J Neurol Rehabil 1991; 5: 13-14
  • 71 Krach LE. Pharmacotherapy of spasticity: oral medications and intrathecal baclofen. J Child Neurol 2001; 16 (01) 31-36
  • 72 Vásquez-Briceño A, Arellano-Saldaña ME, León-Hernández SR, Morales-Osorio MG. The usefulness of tizanidine. A one-year follow-up of the treatment of spasticity in infantile cerebral palsy [in Spanish]. Rev Neurol 2006; 43 (03) 132-136
  • 73 Palazón García R, Benavente Valdepeñas A, Arroyo Riaño O. Protocol for tizanidine use in infantile cerebral palsy [in Spanish]. An Pediatr (Barc) 2008; 68 (05) 511-515
  • 74 Feron FJ, Hendriksen JG, Nicolai J, Vles JS. New-onset seizures: a possible association with clonidine?. Pediatr Neurol 2008; 38 (02) 147-149
  • 75 Goldfinger MM, Tripi PA. Cardiac arrest in a child with cerebral palsy undergoing sevoflurane induction of anesthesia after preoperative clonidine. Paediatr Anaesth 2007; 17 (03) 270-272
  • 76 Ethans K. Intrathecal baclofen therapy: indications, pharmacology, surgical implant, and efficacy. Acta Neurochir Suppl (Wien) 2007; 97 (Pt 1): 155-162
  • 77 Hasnat MJ, Rice JE. Intrathecal baclofen for treating spasticity in children with cerebral palsy. Cochrane Database Syst Rev 2015; 11 (11) CD004552
  • 78 Morton RE, Gray N, Vloeberghs M. Controlled study of the effects of continuous intrathecal baclofen infusion in non-ambulant children with cerebral palsy. Dev Med Child Neurol 2011; 53 (08) 736-741
  • 79 Vles GF, Soudant DL, Hoving MA. , et al. Long-term follow-up on continuous intrathecal baclofen therapy in non-ambulant children with intractable spastic cerebral palsy. Eur J Paediatr Neurol 2013; 17 (06) 639-644
  • 80 Pin TW, McCartney L, Lewis J, Waugh MC. Use of intrathecal baclofen therapy in ambulant children and adolescents with spasticity and dystonia of cerebral origin: a systematic review. Dev Med Child Neurol 2011; 53 (10) 885-895
  • 81 Bonouvrié L, Becher J, Soudant D. , et al. The effect of intrathecal baclofen treatment on activities of daily life in children and young adults with cerebral palsy and progressive neurological disorders. Eur J Paediatr Neurol 2016; 20 (04) 538-544
  • 82 McCormick ZL, Chu SK, Binler D. , et al. Intrathecal versus oral baclofen: a matched cohort study of spasticity, pain, sleep, fatigue, and quality of life. PM R 2016; 8 (06) 553-562
  • 83 Liew PY, Stewart K, Khan D, Arnup SJ, Scheinberg A. Intrathecal baclofen therapy in children: an analysis of individualized goals. Dev Med Child Neurol 2018; 60 (04) 367-373
  • 84 Rushton PRP, Nasto LA, Aujla RK, Ammar A, Grevitt MP, Vloeberghs MH. Intrathecal baclofen pumps do not accelerate progression of scoliosis in quadriplegic spastic cerebral palsy. Eur Spine J 2017; 26 (06) 1652-1657
  • 85 Walker KR, Novotny SA, Krach LE. Does intrathecal baclofen therapy increase prevalence and/or progression of neuromuscular scoliosis?. Spine Deform 2017; 5 (06) 424-429
  • 86 Buizer AI, Martens BHM, Grandbois van Ravenhorst C, Schoonmade LJ, Becher JG, Vermeulen RJ. Effect of continuous intrathecal baclofen therapy in children: a systematic review. Dev Med Child Neurol 2019; 61 (02) 128-134
  • 87 Albright AL, Ferson SS. Intrathecal baclofen therapy in children. Neurosurg Focus 2006; 21 (02) e3
  • 88 Armstrong RW, Steinbok P, Cochrane DD, Kube SD, Fife SE, Farrell K. Intrathecally administered baclofen for treatment of children with spasticity of cerebral origin. J Neurosurg 1997; 87 (03) 409-414
  • 89 Gilmartin R, Bruce D, Storrs BB. , et al. Intrathecal baclofen for management of spastic cerebral palsy: multicenter trial. J Child Neurol 2000; 15 (02) 71-77
  • 90 Hoving MA, van Raak EPM, Spincemaille GHJ, Palmans LJ, Sleypen FA, Vles JS. ; Dutch Study Group on Child Spasticity. Intrathecal baclofen in children with spastic cerebral palsy: a double-blind, randomized, placebo-controlled, dose-finding study. Dev Med Child Neurol 2007; 49 (09) 654-659
  • 91 Thakur SK, Rubin BA, Harter DH. Long-term follow-up for lumbar intrathecal baclofen catheters placed using the paraspinal subfascial technique. J Neurosurg Pediatr 2016; 17 (03) 357-360
  • 92 Sommer BR, Petrides G. A case of baclofen-induced psychotic depression. J Clin Psychiatry 1992; 53 (06) 211-212
  • 93 Sanger TD. Pediatric movement disorders. Curr Opin Neurol 2003; 16 (04) 529-535
  • 94 Graham D, Aquilina K, Mankad K, Wimalasundera N. Selective dorsal rhizotomy: current state of practice and the role of imaging. Quant Imaging Med Surg 2018; 8 (02) 209-218
  • 95 Trost JP, Schwartz MH, Krach LE, Dunn ME, Novacheck TF. Comprehensive short-term outcome assessment of selective dorsal rhizotomy. Dev Med Child Neurol 2008; 50 (10) 765-771
  • 96 McLaughlin JF, Bjornson KF, Astley SJ. , et al. Selective dorsal rhizotomy: efficacy and safety in an investigator-masked randomized clinical trial. Dev Med Child Neurol 1998; 40 (04) 220-232
  • 97 Grunt S, Becher JG, Vermeulen RJ. Long-term outcome and adverse effects of selective dorsal rhizotomy in children with cerebral palsy: a systematic review. Dev Med Child Neurol 2011; 53 (06) 490-498
  • 98 Tedroff K, Löwing K, Jacobson DN, Åström E. Does loss of spasticity matter? A 10-year follow-up after selective dorsal rhizotomy in cerebral palsy. Dev Med Child Neurol 2011; 53 (08) 724-729
  • 99 Ailon T, Beauchamp R, Miller S. , et al. Long-term outcome after selective dorsal rhizotomy in children with spastic cerebral palsy. Childs Nerv Syst 2015; 31 (03) 415-423
  • 100 Oudenhoven LM, van der Krogt MM, Romei M. , et al. Factors associated with long-term improvement of gait after selective dorsal rhizotomy. Arch Phys Med Rehabil 2019; 100 (03) 474-480
  • 101 McLaughlin J, Bjornson K, Temkin N. , et al. Selective dorsal rhizotomy: meta-analysis of three randomized controlled trials. Dev Med Child Neurol 2002; 44 (01) 17-25
  • 102 Steinbok P, Reiner A, Beauchamp RD, Cochrane DD, Keyes R. Selective functional posterior rhizotomy for treatment of spastic cerebral palsy in children. Review of 50 consecutive cases. Pediatr Neurosurg 1992; 18 (01) 34-42
  • 103 McLaughlin JF, Bjornson KF, Astley SJ. , et al. The role of selective dorsal rhizotomy in cerebral palsy: critical evaluation of a prospective clinical series. Dev Med Child Neurol 1994; 36 (09) 755-769
  • 104 Wright FV, Sheil EM, Drake JM, Wedge JH, Naumann S. Evaluation of selective dorsal rhizotomy for the reduction of spasticity in cerebral palsy: a randomized controlled trial. Dev Med Child Neurol 1998; 40 (04) 239-247
  • 105 Van Campenhout A, Huenaerts C, Poulussen L, Prinsen SD, Desloovere K. Role of femoral derotation on gait after selective dorsal rhizotomy in children with spastic cerebral palsy. Dev Med Child Neurol 2019; 61 (10) 1196-1201
  • 106 Cawker K, Aquilana K. Selective dorsal rhizotomy (the perspective of the neurosurgeon and the physiotherapist). Paediatr Child Health 2016; 26: 395-399
  • 107 Nicolini-Panisson RD, Tedesco AP, Folle MR, Donadio MVF. Selective dorsal rhizotomy in cerebral palsy: selection criteria and postoperative physical therapy protocols. Rev Paul Pediatr 2018; 36 (01) 9
  • 108 Theis N, Korff T, Kairon H, Mohagheghi AA. Does acute passive stretching increase muscle length in children with cerebral palsy?. Clin Biomech (Bristol, Avon) 2013; 28 (9-10): 1061-1067
  • 109 Kalkman BM, Bar-On L, Cenni F. , et al. Medial gastrocnemius muscle stiffness cannot explain the increased ankle joint range of motion following passive stretching in children with cerebral palsy. Exp Physiol 2018; 103 (03) 350-357
  • 110 Kalkman BM, Holmes G, Bar-On L. , et al. Resistance training combined with stretching increases tendon stiffness and is more effective than stretching alone in children with cerebral palsy: a randomized controlled trial. Front Pediatr 2019; 7: 333
  • 111 Hösl M, Böhm H, Eck J, Döderlein L, Arampatzis A. Effects of backward-downhill treadmill training versus manual static plantar flexor stretching on muscle-joint pathology and function in children with spastic cerebral palsy. Gait Posture 2018; 65: 121-128
  • 112 Schwarze M, Block J, Kunz T. , et al. The added value of orthotic management in the context of multi-level surgery in children with cerebral palsy. Gait Posture 2019; 68: 525-530
  • 113 Chad KE, Bailey DA, McKay HA, Zello GA, Snyder RE. The effect of a weight-bearing physical activity program on bone mineral content and estimated volumetric density in children with spastic cerebral palsy. J Pediatr 1999; 135 (01) 115-117
  • 114 Gudjonsdottir B, Stemmons Mercer V, Mercer V. Effects of a dynamic versus a static prone stander on bone mineral density and behavior in four children with severe cerebral palsy. Pediatr Phys Ther 2002; 14 (01) 38-46
  • 115 Gibson SK, Sprod JA, Maher CA. The use of standing frames for contracture management for nonmobile children with cerebral palsy. Int J Rehabil Res 2009; 32 (04) 316-323
  • 116 Aye T, Thein S, Hlaing T. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy. J Phys Ther Sci 2016; 28 (02) 671-676
  • 117 Gillett JG, Boyd RN, Carty CP, Barber LA. The impact of strength training on skeletal muscle morphology and architecture in children and adolescents with spastic cerebral palsy: a systematic review. Res Dev Disabil 2016; 56 (56) 183-196
  • 118 Verschuren O, Peterson MD, Balemans ACJ, Hurvitz EA. Exercise and physical activity recommendations for people with cerebral palsy. Dev Med Child Neurol 2016; 58 (08) 798-808
  • 119 Faigenbaum AD, Kraemer WJ, Blimkie CJ. , et al. Youth resistance training: updated position statement paper from the national strength and conditioning association. J Strength Cond Res 2009; 23 (5, Suppl): S60-S79
  • 120 Ryan JM, Theis N, Kilbride C. , et al. Strength training for adolescents with cerebral palsy (STAR): study protocol of a randomised controlled trial to determine the feasibility, acceptability and efficacy of resistance training for adolescents with cerebral palsy. BMJ Open 2016; 6 (10) e012839
  • 121 Shortland A. Muscle deficits in cerebral palsy and early loss of mobility: can we learn something from our elders?. Dev Med Child Neurol 2009; 51 (Suppl. 04) 59-63
  • 122 Barber L, Hastings-Ison T, Baker R, Kerr Graham H, Barrett R, Lichtwark G. The effects of botulinum toxin injection frequency on calf muscle growth in young children with spastic cerebral palsy: a 12-month prospective study. J Child Orthop 2013; 7 (05) 425-433
  • 123 Bar-On L, Van Campenhout A, Desloovere K. , et al. Is an instrumented spasticity assessment an improvement over clinical spasticity scales in assessing and predicting the response to integrated botulinum toxin type a treatment in children with cerebral palsy?. Arch Phys Med Rehabil 2014; 95 (03) 515-523
  • 124 Bar-On L, Aertbeliën E, Molenaers G, Dan B, Desloovere K. Manually controlled instrumented spasticity assessments: a systematic review of psychometric properties. Dev Med Child Neurol 2014; 56 (10) 932-950
  • 125 Baker R, Esquenazi A, Benedetti MG, Desloovere K. Gait analysis: clinical facts. Eur J Phys Rehabil Med 2016; 52 (04) 560-574
  • 126 Cook RE, Schneider I, Hazlewood ME, Hillman SJ, Robb JE. Gait analysis alters decision-making in cerebral palsy. J Pediatr Orthop 2003; 23 (03) 292-295
  • 127 DeLuca PA, Davis III RB, Ounpuu S, Rose S, Sirkin R. Alterations in surgical decision making in patients with cerebral palsy based on three-dimensional gait analysis. J Pediatr Orthop 1997; 17 (05) 608-614
  • 128 Jaspers E, Desloovere K, Bruyninckx H. , et al. Three-dimensional upper limb movement characteristics in children with hemiplegic cerebral palsy and typically developing children. Res Dev Disabil 2011; 32 (06) 2283-2294
  • 129 Mailleux L, Jaspers E, Ortibus E. , et al. Clinical assessment and three-dimensional movement analysis: an integrated approach for upper limb evaluation in children with unilateral cerebral palsy. PLoS One 2017; 12 (07) e0180196
  • 130 Simon-Martinez C, Jaspers E, Mailleux L. , et al. Negative influence of motor impairments on upper limb movement patterns in children with unilateral cerebral palsy. a statistical parametric mapping study. Front Hum Neurosci 2017; 11: 482
  • 131 Heyrman L, Desloovere K, Molenaers G. , et al. Clinical characteristics of impaired trunk control in children with spastic cerebral palsy. Res Dev Disabil 2013; 34 (01) 327-334
  • 132 Heyrman L, Molenaers G, Desloovere K. , et al. A clinical tool to measure trunk control in children with cerebral palsy: the trunk control measurement scale. Res Dev Disabil 2011; 32 (06) 2624-2635
  • 133 Bjornson KF, Graubert CS, Buford V, McLaughlin J. Validity of the gross motor function measure. Pediatr Phys Ther 1998; 10: 43-47
  • 134 Russell DJ, Rosenbaum PL, Cadman DT, Gowland C, Hardy S, Jarvis S. The gross motor function measure: a means to evaluate the effects of physical therapy. Dev Med Child Neurol 1989; 31 (03) 341-352
  • 135 Russell DJ, Avery LM, Rosenbaum PL, Raina PS, Walter SD, Palisano RJ. Improved scaling of the gross motor function measure for children with cerebral palsy: evidence of reliability and validity. Phys Ther 2000; 80 (09) 873-885
  • 136 Randall M, Johnson L, Reddihough D. The Melbourne Assessment of Unilateral Upper Limb Function: Test Administration Manual. Melbourne: Royal Children's Hospital; 1999
  • 137 Krumlinde-Sundholm L, Eliasson AC. Development of the assisting hand assessment, a rash-built measure intended for children with unilateral upper limb impairments. Scand J Occup Ther 2003; 10: 16-26
  • 138 Taylor N, Sand PL, Jebsen RH. Evaluation of hand function in children. Arch Phys Med Rehabil 1973; 54 (03) 129-135
  • 139 Roberts A, Stewart C, Freeman R. Gait analysis to guide a selective dorsal rhizotomy program. Gait Posture 2015; 42 (01) 16-22
  • 140 Sätilä H, Huhtala H. Botulinum toxin type A injections for treatment of spastic equinus in cerebral palsy: a secondary analysis of factors predictive of favorable response. Am J Phys Med Rehabil 2010; 89 (11) 865-872
  • 141 Franki I, De Cat J, Deschepper E. , et al. A clinical decision framework for the identification of main problems and treatment goals for ambulant children with bilateral spastic cerebral palsy. Res Dev Disabil 2014; 35 (05) 1160-1176