Semin Respir Crit Care Med 2020; 41(04): 455-469
DOI: 10.1055/s-0040-1702193
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Role of Streptococcus pneumoniae in Community-Acquired Pneumonia

Charles Feldman
1   Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
,
Ronald Anderson
2   Department of Immunology and Institute of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
› Author Affiliations
Further Information

Publication History

Publication Date:
13 June 2020 (online)

Abstract

With the notable exceptions of the United States and Canada in particular, the global burden of disease in adults due to invasive infection with the dangerous respiratory, bacterial pathogen, Streptococcus pneumoniae (pneumococcus) remains. This situation prevails despite the major successes of inclusion of polysaccharide conjugate vaccines (PCVs) in many national childhood immunization programs and associated herd protection in adults, as well as the availability of effective antimicrobial agents. Accurate assessment of the geographic variations in the prevalence of invasive pneumococcal disease (IPD) has, however, been somewhat impeded by the limitations imposed on the acquisition of reliable epidemiological data due to reliance on often insensitive, laboratory-based, pathogen identification procedures. This, in turn, may result in underestimation of the true burden of IPD and represents a primary focus of this review. Other priority topics include the role of PCVs in the changing epidemiology of IPD in adults worldwide, smoking as a risk factor not only in respect of increasing susceptibility for development of IPD, but also in promoting pneumococcal antibiotic resistance. The theme of pneumococcal antibiotic resistance has been expanded to include mechanisms of resistance to commonly used classes of antibiotics, specifically β-lactams, macrolides and fluoroquinolones, and, perhaps somewhat contentiously, the impact of resistance on treatment outcome. Finally, but no less importantly, the role of persistent antigenemia as a driver of a chronic, subclinical, systemic proinflammatory/procoagulant phenotype that may underpin the long-term sequelae and premature mortality of those adults who have recovered from an episode of IPD, is considered.

 
  • References

  • 1 GBD 2016 Lower Respiratory Infections Collaborators. Estimates of the global, and national morbidity, mortality and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis 2018; 18 (11) 1191-1210
  • 2 Feldman C, Anderson R. The role of Streptococcus pneumoniae in community-acquired pneumonia. Semin Respir Crit Care Med 2016; 37 (06) 806-818
  • 3 Aston SJ, Rylance J. Community-acquired pneumonia in sub-Saharan Africa. Semin Respir Crit Care Med 2016; 37 (06) 855-867
  • 4 Song JH, Huh K, Chung DR. Community-acquired pneumonia in the Asia-Pacific region. Semin Respir Crit Care Med 2016; 37 (06) 839-854
  • 5 Iannella HA, Luna CM. Community-acquired pneumonia in Latin America. Semin Respir Crit Care Med 2016; 37 (06) 868-875
  • 6 Musher DM, Abers MS, Bartlett JG. Evolving understanding of the causes of pneumonia in adults, with special attention to the role of pneumococcus. Clin Infect Dis 2017; 65 (10) 1736-1744
  • 7 Jain S, Pavia AT. The modern quest for the “Holy Grail” of pneumonia etiology. Clin Infect Dis 2016; 62 (07) 826-828
  • 8 Said MA, Johnson HL, Nonyane BAS. , et al; AGEDD Adult Pneumococcal Burden Study Team. Estimating the burden of pneumococcal pneumonia among adults: a systematic review and meta-analysis of diagnostic techniques. PLoS One 2013; 8 (04) e60273
  • 9 Musher DM, Roig IL, Cazares G, Stager CE, Logan N, Safar H. Can an etiologic agent be identified in adults who are hospitalized for community-acquired pneumonia: results of a one-year study. J Infect 2013; 67 (01) 11-18
  • 10 Jain S, Self WH, Wunderink RG. , et al; CDC EPIC Study Team. Community-acquired pneumonia requiring hospitalization among U.S. adults. N Engl J Med 2015; 373 (05) 415-427
  • 11 Gadsby NJ, Russell CD, McHugh MP. , et al. Comprehensive molecular testing for respiratory pathogens in community-acquired pneumonia. Clin Infect Dis 2016; 62 (07) 817-823
  • 12 File Jr TM, Marrie TJ. Burden of community-acquired pneumonia in North American adults. Postgrad Med 2010; 122 (02) 130-141
  • 13 Isturiz RE, Luna CM, Ramirez J. Clinical and economic burden of pneumonia among adults in Latin America. Int J Infect Dis 2010; 14 (10) e852-e856
  • 14 Song JH, Thamlikitkul V, Hsueh PR. Clinical and economic burden of community-acquired pneumonia amongst adults in the Asia-Pacific region. Int J Antimicrob Agents 2011; 38 (02) 108-117
  • 15 Welte T, Torres A, Nathwani D. Clinical and economic burden of community-acquired pneumonia among adults in Europe. Thorax 2012; 67 (01) 71-79
  • 16 Wunderink RG, Self WH, Anderson EJ. , et al. Pneumococcal community-acquired pneumonia detected by serotype-specific urinary antigen detection assays. Clin Infect Dis 2018; 66 (10) 1504-1510
  • 17 LeBlanc JJ, ElSherif M, Ye L. , et al; Serious Outcomes Surveillance (SOS) Network of the Canadian Immunization Research Network (CIRN). Burden of vaccine-preventable pneumococcal disease in hospitalized adults: a Canadian Immunization Research Network (CIRN) Serious Outcomes Surveillance (SOS) network study. Vaccine 2017; 35 (29) 3647-3654
  • 18 Luna CM, Pulido L, Niederman MS. , et al. Decreased relative risk of pneumococcal pneumonia during the last decade, a nested case-control study. Pneumonia (Nathan) 2018; 10: 9
  • 19 Peto L, Nadjm B, Horby P. , et al. The bacterial aetiology of adult community-acquired pneumonia in Asia: a systematic review. Trans R Soc Trop Med Hyg 2014; 108 (06) 326-337
  • 20 Torres A, Blasi F, Peetermans WE, Viegi G, Welte T. The aetiology and antibiotic management of community-acquired pneumonia in adults in Europe: a literature review. Eur J Clin Microbiol Infect Dis 2014; 33 (07) 1065-1079
  • 21 Rozenbaum MH, Pechlivanoglou P, van der Werf TS, Lo-Ten-Foe JR, Postma MJ, Hak E. The role of Streptococcus pneumoniae in community-acquired pneumonia among adults in Europe: a meta-analysis. Eur J Clin Microbiol Infect Dis 2013; 32 (03) 305-316
  • 22 Chalmers JD, Campling J, Dicker A, Woodhead M, Madhava H. A systematic review of the burden of vaccine preventable pneumococcal disease in UK adults. BMC Pulm Med 2016; 16 (01) 77
  • 23 Bjarnason A, Westin J, Lindh M. , et al. Incidence, etiology, and outcomes of community-acquired pneumonia: a population-based study. Open Forum Infect Dis 2018; 5 (02) ofy010
  • 24 Whitney CG. Changing epidemiology of pneumococcal disease in the era of conjugate vaccines. Curr Epidemiol Rep 2016; 3 (02) 125-135
  • 25 Vadlamudi NK, Chen A, Marra F. Impact of the 13-valent pneumococcal conjugate vaccine among adults: a systematic review and meta-analysis. Clin Infect Dis 2019; 69 (01) 34-49
  • 26 Pelton SI, Bornheimer R, Doroff R, Shea KM, Sato R, Weycker D. Decline in pneumococcal disease attenuated in older adults and those with comorbidities following universal childhood PCV13 immunization. Clin Infect Dis 2019; 68 (11) 1831-1838
  • 27 Hanquet G, Krizova P, Valentiner-Branth P. , et al; SpIDnet/I-MOVE+ Pneumo Group. Effect of childhood pneumococcal conjugate vaccination on invasive disease in older adults of 10 European countries: implications for adult vaccination. Thorax 2019; 74 (05) 473-482
  • 28 von Gottberg A, de Gouveia L, Tempia S. , et al; GERMS-SA Investigators. Effects of vaccination on invasive pneumococcal disease in South Africa. N Engl J Med 2014; 371 (20) 1889-1899
  • 29 Tsaban G, Ben-Shimol S. Indirect (herd) protection, following pneumococcal conjugated vaccines introduction: a systematic review of the literature. Vaccine 2017; 35 (22) 2882-2891
  • 30 Shiri T, Datta S, Madan J. , et al. Indirect effects of childhood pneumococcal conjugate vaccination on invasive pneumococcal disease: a systematic review and meta-analysis. Lancet Glob Health 2017; 5 (01) e51-e59
  • 31 Isturiz RE, Ramirez J, Self WH. , et al. Pneumococcal epidemiology among us adults hospitalized for community-acquired pneumonia. Vaccine 2019; 37 (25) 3352-3361
  • 32 Aspa J, Rajas O. Invasive pneumococcal disease and pneumococcal pneumonia: a review of the pertinent clinical issues. Clin Pulm Med 2014; 21 (02) 76-80
  • 33 Nuorti JP, Butler JC, Farley MM. , et al; Active Bacterial Core Surveillance Team. Cigarette smoking and invasive pneumococcal disease. N Engl J Med 2000; 342 (10) 681-689
  • 34 Bello S, Menéndez R, Antoni T. , et al. Tobacco smoking increases the risk for death from pneumococcal pneumonia. Chest 2014; 146 (04) 1029-1037
  • 35 Baskaran V, Murray RL, Hunter A, Lim WS, McKeever TM. Effect of tobacco smoking on the risk of developing community acquired pneumonia: a systematic review and meta-analysis. PLoS One 2019; 14 (07) e0220204
  • 36 Feldman C, Anderson R. Cigarette smoking and mechanisms of susceptibility to infections of the respiratory tract and other organ systems. J Infect 2013; 67 (03) 169-184
  • 37 Mutepe ND, Cockeran R, Steel HC. , et al. Effects of cigarette smoke condensate on pneumococcal biofilm formation and pneumolysin. Eur Respir J 2013; 41 (02) 392-395
  • 38 Monserrat-Martinez A, Gambin Y, Sierecki E. Thinking outside the bug: molecular targets and strategies to overcome antibiotic resistance. Int J Mol Sci 2019; 20 (06) E1255
  • 39 Cockeran R, Herbert JA, Mitchell TJ. , et al. Exposure of a 23F serotype strain of Streptococcus pneumoniae to cigarette smoke condensate is associated with selective upregulation of genes encoding the two-component regulatory system 11 (TCS11). BioMed Res Int 2014; 2014: 976347
  • 40 Manna S, Waring A, Papanicolaou A. , et al. The transcriptomic response of Streptococcus pneumoniae following exposure to cigarette smoke extract. Sci Rep 2018; 8 (01) 15716
  • 41 Li YH, Lau PC, Tang N, Svensäter G, Ellen RP, Cvitkovitch DG. Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. J Bacteriol 2002; 184 (22) 6333-6342
  • 42 Gámez G, Castro A, Gómez-Mejia A. , et al. The variome of pneumococcal virulence factors and regulators. BMC Genomics 2018; 19 (01) 10
  • 43 Haas W, Kaushal D, Sublett J, Obert C, Tuomanen EI. Vancomycin stress response in a sensitive and a tolerant strain of Streptococcus pneumoniae . J Bacteriol 2005; 187 (23) 8205-8210
  • 44 Lubelski J, Konings WN, Driessen AJ. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 2007; 71 (03) 463-476
  • 45 Feldman C, Matapa G, Dix-Peek T, Cockeran R, Anderson R, Steel H. Effects of cigarette smoke condensate (CSC) on clarithromycin-mediated alterations in resistance gene expression by Streptococcus pneumoniae . Am J Respir Crit Care Med 2019; 199: A1201
  • 46 Arthur M, Andremont A, Courvalin P. Distribution of erythromycin esterase and rRNA methylase genes in members of the family Enterobacteriaceae highly resistant to erythromycin. Antimicrob Agents Chemother 1987; 31 (03) 404-409
  • 47 El Moujaber G, Osman M, Rafei R, Dabboussi F, Hamze M. Molecular mechanisms and epidemiology of resistance in Streptococcus pneumoniae in the Middle East region. J Med Microbiol 2017; 66 (07) 847-858
  • 48 Cockeran R, Dix-Peek T, Dickens C, Steel HC, Anderson R, Feldman C. Biofilm formation and induction of stress response genes is a common response of several serotypes of the pneumococcus to cigarette smoke condensate. J Infect 2020; 80 (02) 204-209
  • 49 Kyuma T, Kimura S, Hanada Y, Suzuki T, Sekimizu K, Kaito C. Ribosomal RNA methyltransferases contribute to Staphylococcus aureus virulence. FEBS J 2015; 282 (13) 2570-2584
  • 50 Baldridge KC, Contreras LM. Functional implications of ribosomal RNA methylation in response to environmental stress. Crit Rev Biochem Mol Biol 2014; 49 (01) 69-89
  • 51 Stojković V, Noda-Garcia L, Tawfik DS, Fujimori DG. Antibiotic resistance evolved via inactivation of a ribosomal RNA methylating enzyme. Nucleic Acids Res 2016; 44 (18) 8897-8907
  • 52 Durmort C, Brown JS. Streptococcus pneumoniae lipoproteins and ABC transporters. In: Brown J. , Hammerschmidt, Orihuela C. , eds. Streptococcus pneumoniae: Molecular Mechanisms of Host-Pathogen Interactions. London: Elsevier Inc.; 2015: 181-206
  • 53 Kulkarni R, Antala S, Wang A. , et al. Cigarette smoke increases Staphylococcus aureus biofilm formation via oxidative stress. Infect Immun 2012; 80 (11) 3804-3811
  • 54 McEachern EK, Hwang JH, Sladewski KM. , et al. Analysis of the effects of cigarette smoke on staphylococcal virulence phenotypes. Infect Immun 2015; 83 (06) 2443-2452
  • 55 Lacoma A, Edwards AM, Young BC, Domínguez J, Prat C, Laabei M. Cigarette smoke exposure redirects Staphylococcus aureus to a virulence profile associated with persistent infection. Sci Rep 2019; 9 (01) 10798
  • 56 Miyahara E, Nishie M, Takumi S. , et al. Environmental mutagens may be implicated in the emergence of drug-resistant microorganisms. FEMS Microbiol Lett 2011; 317 (02) 109-116
  • 57 Scott A, Lugg ST, Aldridge K. , et al. Pro-inflammatory effects of e-cigarette vapour condensate on human alveolar macrophages. Thorax 2018; 73 (12) 1161-1169
  • 58 Miyashita L, Suri R, Dearing E. , et al. E-cigarette vapour enhances pneumococcal adherence to airway epithelial cells. Eur Respir J 2018; 51 (02) 1701592
  • 59 Alexander LEC, Enany S, McEachern E. Effects of electronic (e)-cigarette vapor on Staphylococcal virulence: are e-cigarettes safer than conventional cigarettes?. In: Enany S, Alexander LEC. , eds. Frontiers in Staphylococcus aureus. London: IntechOpen; 2017: 105-116
  • 60 Jansen KU, Anderson AS. The role of vaccines in fighting antimicrobial resistance (AMR). Hum Vaccin Immunother 2018; 14 (09) 2142-2149
  • 61 Kim L, McGee L, Tomczyk S, Beall B. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: a United States perspective. Clin Microbiol Rev 2016; 29 (03) 525-552
  • 62 Obolski U, Lourenço J, Thompson C, Thompson R, Gori A, Gupta S. Vaccination can drive an increase in frequencies of antibiotic resistance among nonvaccine serotypes of Streptococcus pneumoniae . Proc Natl Acad Sci U S A 2018; 115 (12) 3102-3107
  • 63 Watkins ER, Penman BS, Lourenço J, Buckee CO, Maiden MC, Gupta S. Vaccination drives changes in metabolic and virulence profiles of Streptococcus pneumoniae . PLoS Pathog 2015; 11 (07) e1005034
  • 64 LeBlanc JJ, ElSherif M, Ye L. , et al. Streptococcus pneumoniae serotype 3 is masking PCV13-mediated herd immunity in Canadian adults hospitalized with community acquired pneumonia: a study from the Serious Outcomes Surveillance (SOS) Network of the Canadian immunization research Network (CIRN). Vaccine 2019; 37 (36) 5466-5473
  • 65 Azarian T, Mitchell PK, Georgieva M. , et al. Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci. PLoS Pathog 2018; 14 (11) e1007438
  • 66 Lo SW, Gladstone RA, van Tonder AJ. , et al; Global Pneumococcal Sequencing Consortium. Pneumococcal lineages associated with serotype replacement and antibiotic resistance in childhood invasive pneumococcal disease in the post-PCV13 era: an international whole-genome sequencing study. Lancet Infect Dis 2019; 19 (07) 759-769
  • 67 Aliberti S, Cook GS, Babu BL. , et al; GLIMP investigators. International prevalence and risk factors evaluation for drug-resistant Streptococcus pneumoniae pneumonia. J Infect 2019; 79 (04) 300-311
  • 68 Kaiser G. Horizontal gene transfer in bacteria. LibreTexts. Available at: https://bio.libretexts.org/Bookshelves/Microbiology/Book%3A_Microbiology_(Kaiser)/Unit_2%3A_Bacterial_Genetics_and_the_Chemical_Control_of_Bacteria/3%3A_Bacterial_Genetics/3.1%3A_Horizontal_Gene_Transfer_in_Bacteria . Accessed June 24, 2019
  • 69 Inniss NL, Prehna G, Morrison DA. The pneumococcal σX activator, ComW, is a DNA-binding protein critical for natural transformation. J Biol Chem 2019; 294 (29) 11101-11118
  • 70 Fontaine L, Boutry C, de Frahan MH. , et al. A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius . J Bacteriol 2010; 192 (05) 1444-1454
  • 71 Mashburn-Warren L, Morrison DA, Federle MJ. The cryptic competence pathway in Streptococcus pyogenes is controlled by a peptide pheromone. J Bacteriol 2012; 194 (17) 4589-4600
  • 72 Khan R, Junges R, Åmdal HA, Chen T, Morrison DA, Petersen FC. A positive feedback loop mediated by Sigma X enhances expression of the streptococcal regulator ComR. Sci Rep 2017; 7 (01) 5984
  • 73 Salvadori G, Junges R, Morrison DA, Petersen FC. Competence in Streptococcus pneumoniae and close commensal relatives: mechanisms and implications. Front Cell Infect Microbiol 2019; 9: 94
  • 74 Ye J, Chu AJ, Lin L, Yang X, Ma C. First-in-class inhibitors targeting the interaction between bacterial RNA polymerase and sigma initiation factor affect the viability and toxin release of Streptococcus pneumoniae . Molecules 2019; 24 (16) E2902
  • 75 Musher DM. Resistance of Streptococcus pneumoniae to beta-lactam antibiotics. UpToDate. Available at: https://www.uptodate.com/contents/resistance-of-streptococcus-pneumoniae-to-beta-lactam-antibiotics . Literature review current through: July 2019: Accessed August 8, 2019
  • 76 Musher DM. Resistance of Streptococcus pneumoniae to the fluoroquinolones, doxycycline, and trimethoprim-sulfamethoxazole. UpToDate. Available at: https://www.uptodate.com/contents/resistance-of-streptococcus-pneumoniae-to-the-fluoroquinolones-doxycycline-and-trimethoprim-sulfamethoxazole . Literature review current through: June 2019: Accessed July 22, 2019
  • 77 Musher DM. Resistance of Streptococcus pneumoniae to the macrolides, azalides, lincosamides, and ketolides. UpToDate. Available at: https://www.uptodate.com/contents/resistance-of-streptococcus-pneumoniae-to-the-macrolides-azalides-lincosamides-and-ketolides . Literature review current through June 2019: Accessed July 22, 2019
  • 78 Hakenbeck R, Brückner R, Denapaite D, Maurer P. Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae . Future Microbiol 2012; 7 (03) 395-410
  • 79 Hakenbeck R. Discovery of β-lactam-resistant variants in diverse pneumococcal populations. Genome Med 2014; 6 (09) 72
  • 80 Chang CY, Lin HJ, Li BR, Li YK. A Novel metallo-β-lactamase involved in the ampicillin resistance of Streptococcus pneumoniae ATCC 49136 strain. PLoS One 2016; 11 (05) e0155905
  • 81 Gamerdinger M, Deuerling E. Macrolides: the plug is out. Cell 2012; 151 (03) 469-471
  • 82 Amsden GW. Advanced-generation macrolides: tissue-directed antibiotics. Int J Antimicrob Agents 2001; 18 (Suppl. 01) S11-S15
  • 83 Ambrose KD, Nisbet R, Stephens DS. Macrolide efflux in Streptococcus pneumoniae is mediated by a dual efflux pump (mel and mef) and is erythromycin inducible. Antimicrob Agents Chemother 2005; 49 (10) 4203-4209
  • 84 Levine C, Hiasa H, Marians KJ. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim Biophys Acta 1998; 1400 (1-3): 29-43
  • 85 Pletz MW, McGee L, Van Beneden CA. , et al. Fluoroquinolone resistance in invasive Streptococcus pyogenes isolates due to spontaneous mutation and horizontal gene transfer. Antimicrob Agents Chemother 2006; 50 (03) 943-948
  • 86 Tocci N, Iannelli F, Bidossi A. , et al. Functional analysis of pneumococcal drug efflux pumps associates the MATE DinF transporter with quinolone susceptibility. Antimicrob Agents Chemother 2013; 57 (01) 248-253
  • 87 Alvarado M, Martín-Galiano AJ, Ferrándiz MJ, Zaballos Á, de la Campa AG. Upregulation of the PatAB transporter confers fluoroquinolone resistance to Streptococcus pseudopneumoniae . Front Microbiol 2017; 8: 2074
  • 88 Feldman C, Anderson R. Antibiotic resistance of pathogens causing community-acquired pneumonia. Semin Respir Crit Care Med 2012; 33 (03) 232-243
  • 89 Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 2018; 9 (01) 522-554
  • 90 Lu L, Hu W, Tian Z. , et al. Developing natural products as potential anti-biofilm agents. Chin Med 2019; 14: 11
  • 91 Tierney AR, Rather PN. Roles of two-component regulatory systems in antibiotic resistance. Future Microbiol 2019; 14: 533-552
  • 92 Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections. Am J Respir Cell Mol Biol 2018; 58 (04) 428-439
  • 93 Fuller JD, McGeer A, Low DE. Drug-resistant pneumococcal pneumonia: clinical relevance and approach to management. Eur J Clin Microbiol Infect Dis 2005; 24 (12) 780-788
  • 94 Jones RN, Jacobs MR, Sader HS. Evolving trends in Streptococcus pneumoniae resistance: implications for therapy of community-acquired bacterial pneumonia. Int J Antimicrob Agents 2010; 36 (03) 197-204
  • 95 Lynch III JP, Zhanel GG. Streptococcus pneumoniae: epidemiology and risk factors, evolution of antimicrobial resistance, and impact of vaccines. Curr Opin Pulm Med 2010; 16 (03) 217-225
  • 96 Cornick JE, Bentley SD. Streptococcus pneumoniae: the evolution of antimicrobial resistance to beta-lactams, fluoroquinolones and macrolides. Microbes Infect 2012; 14 (7-8): 573-583
  • 97 Wunderink RG, Yin Y. Antibiotic resistance in community-acquired pneumonia pathogens. Semin Respir Crit Care Med 2016; 37 (06) 829-838
  • 98 Cherazard R, Epstein M, Doan TL, Salim T, Bharti S, Smith MA. Antimicrobial resistant Streptococcus pneumoniae: prevalence, mechanisms, and clinical implications. Am J Ther 2017; 24 (03) e361-e369
  • 99 Jones RN, Sader HS, Moet GJ, Farrell DJ. Declining antimicrobial susceptibility of Streptococcus pneumoniae in the United States: report from the SENTRY Antimicrobial Surveillance Program (1998-2009). Diagn Microbiol Infect Dis 2010; 68 (03) 334-336
  • 100 Jones RN, Sader HS, Mendes RE, Flamm RK. Update on antimicrobial susceptibility trends among Streptococcus pneumoniae in the United States: report of ceftaroline activity from the SENTRY Antimicrobial Surveillance Program (1998-2011). Diagn Microbiol Infect Dis 2013; 75 (01) 107-109
  • 101 Sader HS, Mendes RE, Le J, Denys G, Flamm RK, Jones RN. Antimicrobial susceptibility of Streptococcus pneumoniae from North America, Europe, Latin America, and the Asia-Pacific Region: results from 20 years of the SENTRY Antimicrobial Surveillance Program (1997-2016). Open Forum Infect Dis 2019; 6 (Suppl. 01) S14-S23
  • 102 Kim SH, Song J-H, Chung DR. , et al; ANSORP Study Group. Changing trends in antimicrobial resistance and serotypes of Streptococcus pneumoniae isolates in Asian countries: an Asian Network for Surveillance of Resistant Pathogens (ANSORP) study. Antimicrob Agents Chemother 2012; 56 (03) 1418-1426
  • 103 Pallares R, Liñares J, Vadillo M. , et al. Resistance to penicillin and cephalosporin and mortality from severe pneumococcal pneumonia in Barcelona, Spain. N Engl J Med 1995; 333 (08) 474-480
  • 104 Pallares R, Capdevila O, Liñares J. , et al. The effect of cephalosporin resistance on mortality in adult patients with nonmeningeal systemic pneumococcal infections. Am J Med 2002; 113 (02) 120-126
  • 105 Ailani RK, Alimchandani A, Hidalgo J, Ailani R, Buckley J, DiGiovine B. Cephalosporin-resistant pneumococcal pneumonia: does it, affect outcome?. Respir Med 2002; 96 (10) 805-811
  • 106 Yu VL, Chiou CC, Feldman C. , et al; International Pneumococcal Study Group. An international prospective study of pneumococcal bacteremia: correlation with in vitro resistance, antibiotics administered, and clinical outcome. Clin Infect Dis 2003; 37 (02) 230-237
  • 107 Falcó V, Almirante B, Jordano Q. , et al. Influence of penicillin resistance on outcome in adult patients with invasive pneumococcal pneumonia: is penicillin useful against intermediately resistant strains?. J Antimicrob Chemother 2004; 54 (02) 481-488
  • 108 Aspa J, Rajas O, Rodríguez de Castro F. , et al; Pneumococcal Pneumonia in Spain Study Group. Drug-resistant pneumococcal pneumonia: clinical relevance and related factors. Clin Infect Dis 2004; 38 (06) 787-798
  • 109 Song JH, Jung SI, Ki HK. , et al; Asian Network for Surveillance of Resistant Pathogens Study Group. Clinical outcomes of pneumococcal pneumonia caused by antibiotic-resistant strains in Asian countries: a study by the Asian Network for Surveillance of Resistant Pathogens. Clin Infect Dis 2004; 38 (11) 1570-1578
  • 110 Song JS, Choe PG, Song KH. , et al. Risk factors for 30-day mortality in adult patients with pneumococcal bacteraemia, and the impact of antimicrobial resistance on clinical outcomes. Epidemiol Infect 2012; 140 (07) 1267-1276
  • 111 Turett GS, Blum S, Fazal BA, Justman JE, Telzak EE. Penicillin resistance and other predictors of mortality in pneumococcal bacteremia in a population with high human immunodeficiency virus seroprevalence. Clin Infect Dis 1999; 29 (02) 321-327
  • 112 Metlay JP, Hofmann J, Cetron MS. , et al. Impact of penicillin susceptibility on medical outcomes for adult patients with bacteremic pneumococcal pneumonia. Clin Infect Dis 2000; 30 (03) 520-528
  • 113 Feikin DR, Schuchat A, Kolczak M. , et al. Mortality from invasive pneumococcal pneumonia in the era of antibiotic resistance, 1995-1997. Am J Public Health 2000; 90 (02) 223-229
  • 114 File Jr TM, Tan JS, Boex JR. The clinical relevance of penicillin-resistant Streptococcus pneumoniae: a new perspective. Clin Infect Dis 2006; 42 (06) 798-800
  • 115 CLSI. Performance Standards for Antimicrobial Susceptibility Testing. CLSI document M100–S18. Wayne, PA: Clinical and Laboratory Institute; 2008
  • 116 Tleyjeh IM, Tlaygeh HM, Hejal R, Montori VM, Baddour LM. The impact of penicillin resistance on short-term mortality in hospitalized adults with pneumococcal pneumonia: a systematic review and meta-analysis. Clin Infect Dis 2006; 42 (06) 788-797
  • 117 Bonnard P, Lescure FX, Douadi Y. , et al. Community-acquired bacteraemic pneumococcal pneumonia in adults: effect of diminished penicillin susceptibility on clinical outcome. J Infect 2005; 51 (01) 69-76
  • 118 Moroney JF, Fiore AE, Harrison LH. , et al. Clinical outcomes of bacteremic pneumococcal pneumonia in the era of antibiotic resistance. Clin Infect Dis 2001; 33 (06) 797-805
  • 119 Wu TT, Hsueh PR, Lee LN, Yang PC, Luh KT. Pneumonia caused by penicillin-nonsusceptible Streptococcus pneumoniae: clinical characteristics, prognostic factors, and outcomes. J Formos Med Assoc 2000; 99 (01) 18-23
  • 120 Lujan M, Gallego M, Fontanals D, Mariscal D, Rello J. Prospective observational study of bacteremic pneumococcal pneumonia: effect of discordant therapy on mortality. Crit Care Med 2004; 32 (03) 625-631
  • 121 Caballero-Granado FJ, Palomino-Nicás J, Pachón J, García-Curiel A. Cefuroxime efficacy in treatment of bacteremic pneumonia due to penicillin-resistant and cefuroxime-resistant Streptococcus pneumoniae . Antimicrob Agents Chemother 1996; 40 (05) 1325-1326
  • 122 Cillóniz C, de la Calle C, Dominedò C. , et al. Impact of cefotaxime non-susceptibility on the clinical outcomes of bacteremic pneumococcal pneumonia. J Clin Med 2019; 8 (08) E1150
  • 123 Klugman KP. Bacteriological evidence of antibiotic failure in pneumococcal lower respiratory tract infections. Eur Respir J Suppl 2002; 36 (Suppl. 36) 3s-8s
  • 124 Chesney PJ, Davis Y, English BK, Wang WC. Occurrence of Streptococcus pneumoniae meningitis during vancomycin and cefotaxime therapy of septicemia in a patient with sickle cell disease. Pediatr Infect Dis J 1995; 14 (11) 1013-1015
  • 125 Buckingham SC, Brown SP, Joaquin VH. Breakthrough bacteremia and meningitis during treatment with cephalosporins parenterally for pneumococcal pneumonia. J Pediatr 1998; 132 (01) 174-176
  • 126 Dowell SF, Smith T, Leversedge K, Snitzer J. Failure of treatment of pneumonia associated with highly resistant pneumococci in a child. Clin Infect Dis 1999; 29 (02) 462-463
  • 127 Schroeder MR, Stephens DS. Macrolide resistance in Streptococcus pneumoniae . Front Cell Infect Microbiol 2016; 6: 98
  • 128 Yanagihara K, Izumikawa K, Higa F. , et al. Efficacy of azithromycin in the treatment of community-acquired pneumonia, including patients with macrolide-resistant Streptococcus pneumoniae infection. Intern Med 2009; 48 (07) 527-535
  • 129 Kohno S, Tateda K, Kadota J. , et al. Contradiction between in vitro and clinical outcome: intravenous followed by oral azithromycin therapy demonstrated clinical efficacy in macrolide-resistant pneumococcal pneumonia. J Infect Chemother 2014; 20 (03) 199-207
  • 130 Kelley MA, Weber DJ, Gilligan P, Cohen MS. Breakthrough pneumococcal bacteremia in patients being treated with azithromycin and clarithromycin. Clin Infect Dis 2000; 31 (04) 1008-1011
  • 131 Lonks JR, Garau J, Medeiros AA. Implications of antimicrobial resistance in the empirical treatment of community-acquired respiratory tract infections: the case of macrolides. J Antimicrob Chemother 2002; 50 (Suppl S2): 87-92
  • 132 Lonks JR, Garau J, Gomez L. , et al. Failure of macrolide antibiotic treatment in patients with bacteremia due to erythromycin-resistant Streptococcus pneumoniae . Clin Infect Dis 2002; 35 (05) 556-564
  • 133 Musher DM, Dowell ME, Shortridge VD. , et al. Emergence of macrolide resistance during treatment of pneumococcal pneumonia. N Engl J Med 2002; 346 (08) 630-631
  • 134 Lynch III JP, Martinez FJ. Clinical relevance of macrolide-resistant Streptococcus pneumoniae for community-acquired pneumonia. Clin Infect Dis 2002; 34 (Suppl. 01) S27-S46
  • 135 Rzeszutek M, Wierzbowski A, Hoban DJ, Conly J, Bishai W, Zhanel GG. A review of clinical failures associated with macrolide-resistant Streptococcus pneumoniae . Int J Antimicrob Agents 2004; 24 (02) 95-104
  • 136 Dylewski J, Davidson R. Bacteremic pneumococcal pneumonia associated with macrolide failure. Eur J Clin Microbiol Infect Dis 2006; 25 (01) 39-42
  • 137 Daneman N, McGeer A, Green K, Low DE. ; Toronto Invasive Bacterial Diseases Network. Macrolide resistance in bacteremic pneumococcal disease: implications for patient management. Clin Infect Dis 2006; 43 (04) 432-438
  • 138 Waterer GW, Wunderink RG, Jones CB. Fatal pneumococcal pneumonia attributed to macrolide resistance and azithromycin monotherapy. Chest 2000; 118 (06) 1839-1840
  • 139 Iannini PB, Paladino JA, Lavin B, Singer ME, Schentag JJ. A case series of macrolide treatment failures in community acquired pneumonia. J Chemother 2007; 19 (05) 536-545
  • 140 Cilloniz C, Albert RK, Liapikou A. , et al. The effect of macrolide resistance on the presentation and outcome of patients hospitalized for Streptococcus pneumoniae pneumonia. Am J Respir Crit Care Med 2015; 191 (11) 1265-1272
  • 141 Low DE. What is the relevance of antimicrobial resistance on the outcome of community-acquired pneumonia caused by Streptococcus pneumoniae? (should macrolide monotherapy be used for mild pneumonia?). Infect Dis Clin North Am 2013; 27 (01) 87-97
  • 142 Niederman MS. Macrolide-resistant pneumococcus in community-acquired pneumonia. Is there still a role for macrolide therapy?. Am J Respir Crit Care Med 2015; 191 (11) 1216-1217
  • 143 Ferrara AM. New fluoroquinolones in lower respiratory tract infections and emerging patterns of pneumococcal resistance. Infection 2005; 33 (03) 106-114
  • 144 Morrissey I, Colclough A, Northwood J. TARGETed surveillance: susceptibility of Streptococcus pneumoniae isolated from community-acquired respiratory tract infections in 2003 to fluoroquinolones and other agents. Int J Antimicrob Agents 2007; 30 (04) 345-351
  • 145 Naba MR, Araj GF, Baban TA, Tabbarah ZA, Awar GN, Kanj SS. Emergence of fluoroquinolone-resistant Streptococcus pneumoniae in Lebanon: a report of three cases. J Infect Public Health 2010; 3 (03) 113-117
  • 146 de Cueto M, Rodríguez JM, Soriano MJ, López-Cerero L, Venero J, Pascual A. Fatal levofloxacin failure in treatment of a bacteremic patient infected with Streptococcus pneumoniae with a preexisting parC mutation. J Clin Microbiol 2008; 46 (04) 1558-1560
  • 147 Low DE. Quinolone resistance among pneumococci: therapeutic and diagnostic implications. Clin Infect Dis 2004; 38 (Suppl. 04) S357-S362
  • 148 Fuller JD, Low DE. A review of Streptococcus pneumoniae infection treatment failures associated with fluoroquinolone resistance. Clin Infect Dis 2005; 41 (01) 118-121
  • 149 Endimiani A, Brigante G, Bettaccini AA, Luzzaro F, Grossi P, Toniolo AQ. Failure of levofloxacin treatment in community-acquired pneumococcal pneumonia. BMC Infect Dis 2005; 5: 106
  • 150 Isea-Peña MC, Sanz-Moreno JC, Esteban J, Fernández-Roblas R, Fernández-Guerrero ML. Risk factors and clinical significance of invasive infections caused by levofloxacin-resistant Streptococcus pneumoniae . Infection 2013; 41 (05) 935-939
  • 151 Schentag JJ, Gilliland KK, Paladino JA. What have we learned from pharmacokinetic and pharmacodynamic theories?. Clin Infect Dis 2001; 32 (Suppl. 01) S39-S46
  • 152 Feldman C, Brink AJ, von Gottberg A. , et al. Antimicrobial susceptibility of pneumococcal isolates causing bacteraemic pneumococcal pneumonia: analysis using current breakpoints and fluoroquinolone pharmacodynamics. Int J Antimicrob Agents 2010; 36 (01) 95-97
  • 153 Feldman C. Clinical relevance of antimicrobial resistance in the management of pneumococcal community-acquired pneumonia. J Lab Clin Med 2004; 143 (05) 269-283
  • 154 Rothermel CD. Penicillin and macrolide resistance in pneumococcal pneumonia: does in vitro resistance affect clinical outcomes?. Clin Infect Dis 2004; 38 (Suppl. 04) S346-S349
  • 155 Peterson LR. Penicillins for treatment of pneumococcal pneumonia: does in vitro resistance really matter?. Clin Infect Dis 2006; 42 (02) 224-233
  • 156 Lynch III JP, Zhanel GG. Streptococcus pneumoniae: does antimicrobial resistance matter?. Semin Respir Crit Care Med 2009; 30 (02) 210-238
  • 157 Cillóniz C, Ardanuy C, Vila J, Torres A. What is the clinical relevance of drug-resistant pneumococcus?. Curr Opin Pulm Med 2016; 22 (03) 227-234
  • 158 Klugman KP, Black S. Impact of existing vaccines in reducing antibiotic resistance: primary and secondary effects. Proc Natl Acad Sci U S A 2018; 115 (51) 12896-12901
  • 159 Kyaw MH, Lynfield R, Schaffner W. , et al; Active Bacterial Core Surveillance of the Emerging Infections Program Network. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae . N Engl J Med 2006; 354 (14) 1455-1463
  • 160 Hampton LM, Farley MM, Schaffner W. , et al. Prevention of antibiotic-nonsusceptible Streptococcus pneumoniae with conjugate vaccines. J Infect Dis 2012; 205 (03) 401-411
  • 161 Richter SS, Diekema DJ, Heilmann KP, Dohrn CL, Riahi F, Doern GV. Changes in pneumococcal serotypes and antimicrobial resistance after introduction of the 13-valent conjugate vaccine in the United States. Antimicrob Agents Chemother 2014; 58 (11) 6484-6489
  • 162 Tomczyk S, Lynfield R, Schaffner W. , et al. Prevention of antibiotic-nonsusceptible invasive pneumococcal disease with the 13-valent pneumococcal conjugate vaccine. Clin Infect Dis 2016; 62 (09) 1119-1125
  • 163 Cillóniz C, Liapikou A, Martin-Loeches I. , et al. Twenty-year trend in mortality among hospitalized patients with pneumococcal community-acquired pneumonia. PLoS One 2018; 13 (07) e0200504
  • 164 Bedos JP, Varon E, Porcher R. , et al. Host-pathogen interactions and prognosis of critically ill immunocompetent patients with pneumococcal pneumonia: the nationwide prospective observational STREPTOGENE study. Intensive Care Med 2018; 44 (12) 2162-2173
  • 165 Restrepo MI, Faverio P, Anzueto A. Long-term prognosis in community-acquired pneumonia. Curr Opin Infect Dis 2013; 26 (02) 151-158
  • 166 Eurich DT, Marrie TJ, Minhas-Sandhu JK, Majumdar SR. Ten-year mortality after community-acquired pneumonia. A prospective cohort. Am J Respir Crit Care Med 2015; 192 (05) 597-604
  • 167 Sandvall B, Rueda AM, Musher DM. Long-term survival following pneumococcal pneumonia. Clin Infect Dis 2013; 56 (08) 1145-1146
  • 168 Wagenvoort GHJ, Sanders EAM, de Melker HE, van der Ende A, Vlaminckx BJ, Knol MJ. Long-term mortality after IPD and bacteremic versus non-bacteremic pneumococcal pneumonia. Vaccine 2017; 35 (14) 1749-1757
  • 169 Ajayi OO, Norton NB, Gress TW, Stanek RJ, Mufson MA. Three decades of follow-up of adults after recovery from invasive pneumococcal pneumonia. Am J Med Sci 2017; 353 (05) 445-451
  • 170 Kenny GE, Wentworth BB, Beasley RP, Foy HM. Correlation of circulating capsular polysaccharide with bacteremia in pneumococcal pneumonia. Infect Immun 1972; 6 (04) 431-437
  • 171 Coonrod JD, Drennan DP. Pneumococcal pneumonia: capsular polysaccharide antigenemia and antibody responses. Ann Intern Med 1976; 84 (03) 254-260
  • 172 Schaffner A, Michel-Harder C, Yeginsoy S. Detection of capsular polysaccharide in serum for the diagnosis of pneumococcal pneumonia: clinical and experimental evaluation. J Infect Dis 1991; 163 (05) 1094-1102
  • 173 Boersma WG, Löwenberg A, Holloway Y, Kuttschrütter H, Snijder JA, Koëter GH. Pneumococcal antigen persistence in sputum from patients with community-acquired pneumonia. Chest 1992; 102 (02) 422-427
  • 174 Van der Auwera P, André A, Bulliard G. , et al. Comparison of latex agglutination and counterimmunoelectrophoresis in the diagnosis of acute Streptococcus pneumoniae infections. Eur J Clin Microbiol 1983; 2 (06) 534-540
  • 175 Marcos MA, Jiménez de Anta MT, de la Bellacasa JP. , et al. Rapid urinary antigen test for diagnosis of pneumococcal community-acquired pneumonia in adults. Eur Respir J 2003; 21 (02) 209-214
  • 176 Andreo F, Prat C, Ruiz-Manzano J. , et al. Persistence of Streptococcus pneumoniae urinary antigen excretion after pneumococcal pneumonia. Eur J Clin Microbiol Infect Dis 2009; 28 (02) 197-201
  • 177 Branger S, Casalta JP, Habib G, Collard F, Raoult D. Streptococcus pneumoniae endocarditis: persistence of DNA on heart valve material 7 years after infectious episode. J Clin Microbiol 2003; 41 (09) 4435-4437
  • 178 Feldman C, Normark S, Henriques-Normark B, Anderson R. Pathogenesis and prevention of risk of cardiovascular events in patients with pneumococcal community-acquired pneumonia. J Intern Med 2019; 285 (06) 635-652
  • 179 Subramanian K, Henriques-Normark B, Normark S. Emerging concepts in the pathogenesis of the Streptococcus pneumoniae: from nasopharyngeal colonizer to intracellular pathogen. Cell Microbiol 2019; 21 (11) e13077