Synlett 2020; 31(15): 1464-1473
DOI: 10.1055/s-0040-1707126
account
© Georg Thieme Verlag Stuttgart · New York

Manganese-Catalyzed Dehydrogenative/Deoxygenative Coupling of Alcohols

Yujie Wang
,
Qiang Liu
We are grateful for financial support from National Program for the National Natural Science Foundation of China (91845107, 21822106), the Beijing Municipal Science and Technology Commission (Z181100005118001), and the Foundation of the Department of Education of Guangdong Province (2018KZDXM070).
Further Information

Publication History

Received: 17 April 2020

Accepted after revision: 26 April 2020

Publication Date:
29 May 2020 (online)


Abstract

Valorization of biomass has become an area of intense focus because of the diminishing reserves of crude oil and the ongoing problem of climate change. The principal strategies for the utilization of biomass as a feedstock are (i) to produce biofuels for the transportation sector and (ii) to produce organic commodity chemicals. In this respect, we have developed a serious of manganese-catalyzed dehydrogenative/deoxygenative coupling reactions of lower alcohols, obtainable from oxygen-rich lignocellulosic biomass, to deliver advanced liquid fuels and valuable chemicals.

1 Introduction

2 Manganese-Catalyzed Upgrading of Ethanol to Butan-1-ol

3 Manganese-Catalyzed Selective Upgrading of Ethanol with Methanol to Isobutanol

4 Manganese-Catalyzed Acceptorless Dehydrogenative Coupling of Alcohols with Hydroxides to Give Carboxylates

5 Manganese-Catalyzed Dual-Deoxygenative Coupling of Primary Alcohols with 2-Arylethanols

6 Conclusion

 
  • References

    • 1a Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT. Science 2002; 297: 807
    • 1b Dodds DR, Gross RA. Science 2007; 318: 1250
    • 1c Alonso DM, Bond JQ, Dumesic JA. Green Chem. 2010; 12: 1493
    • 1d Dam JT, Hanefeld U. ChemSusChem 2011; 4: 1017
    • 1e Ruppert AM, Weinberg K, Palkovits R. Angew. Chem. Int. Ed. 2012; 51: 2564
    • 2a Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M. Science 2012; 337: 695
    • 2b Barta K, Ford PC. Acc. Chem. Res. 2014; 47: 1503
    • 3a Czernik S, Bridgwater AV. Energy Fuels 2004; 18: 590
    • 3b Mohan D, Pittman CU. Jr, Steele PH. Energy Fuels 2006; 20: 848
    • 3c Wright MM, Daugaard DE, Satrio JA, Brown RC. Fuel 2010; 89: S2
    • 3d Vispute TP, Zhang H, Sanna A, Xiao R, Huber GW. Science 2010; 330: 1222
  • 4 Oasmaa A, Czernik S. Energy Fuels 1999; 13: 914
    • 5a Shiramizu M, Toste FD. Angew. Chem. Int. Ed. 2012; 51: 8082
    • 5b Sawadjoon S, Lundstedt A, Samec JS. M. ACS Catal. 2013; 3: 635
    • 5c Kusumoto S, Nozaki K. Nat. Commun. 2015; 6: 6296
    • 5d Dai X.-J, Li C.-J. J. Am. Chem. Soc. 2016; 138: 5433
    • 5e Bauer JO, Chakraborty S, Milstein D. ACS Catal. 2017; 7: 4462
    • 6a Nichols JM, Bishop LM, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2010; 132: 12554 ; corrigendum: J. Am. Chem. Soc. 2010, 132, 16725
    • 6b Zakzeski J, Jongerius AL, Bruijnincx PC. A, Weckhuysen BM. ChemSusChem 2012; 5: 1602
    • 6c Parsell TH, Owen BC, Klein I, Jarrell TM, Marcum CL, Haupert LJ, Amundson LM, Kenttämaa HI, Ribeiro F, Miller JT, Abu-Omar MM. Chem. Sci. 2013; 4: 806
    • 6d vom Stein T, Weigand T, Merkens C, Klankermayer J, Leitner W. ChemCatChem 2013; 5: 439
    • 6e Nguyen JD, Matsuura BS, Stephenson CR. J. J. Am. Chem. Soc. 2014; 136: 1218
    • 6f Zhang J, Teo J, Chen X, Asakura H, Tanaka T, Teramura K, Yan N. ACS Catal. 2014; 4: 1574
    • 6g vom Stein T, den Hartog T, Buendia J, Stoychev S, Mottweiler J, Bolm C, Klankermayer J, Leitner W. Angew. Chem. Int. Ed. 2015; 54: 5859
    • 6h Bosque I, Magallanes G, Rigoulet M, Kärkäs MD, Stephenson CR. J. ACS Cent. Sci. 2017; 3: 621
    • 6i Magallanes G, Kärkäs MD, Bosque I, Lee S, Maldonado S, Stephenson CR. J. ACS Catal. 2019; 9: 2252
    • 7a Koda K, Matsu-ura T, Obora Y, Ishii Y. Chem. Lett. 2009; 38: 838
    • 7b Dowson GR. M, Haddow MF, Lee J, Wingad RL, Wass DF. Angew. Chem. Int. Ed. 2013; 52: 9005
    • 7c Chakraborty S, Piszel PE, Hayes CE, Baker RT, Jones WD. J. Am. Chem. Soc. 2015; 137: 14264
    • 7d Wingad RL, Gates PJ, Street ST. G, Wass DF. ACS Catal. 2015; 5: 5822
    • 7e Tseng K.-NT, Lin S, Kampf JW, Szymczak NK. Chem. Commun. 2016; 52: 2901
    • 7f Xie Y, Ben-David Y, Shimon LJ. W, Milstein D. J. Am. Chem. Soc. 2016; 138: 9077
    • 7g Wingad RL, Bergström EJ, Everett M, Pellow KJ, Wass DF. Chem. Commun. 2016; 52: 5202
    • 7h Newland RJ, Wyatt MF, Wingad RL, Mansell SM. Dalton Trans. 2017; 46: 6172
    • 7i Pellow KJ, Wingad RL, Wass DF. Catal. Sci. Technol. 2017; 7: 5128
    • 8a Kallmeier F, Kempe R. Angew. Chem. Int. Ed. 2018; 57: 46
    • 8b Filonenko GA, van Putten R, Hensen EJ. M, Pidko EA. Chem. Soc. Rev. 2018; 47: 1459
    • 8c Gorgas N, Kirchner K. Acc. Chem. Res. 2018; 51: 1558
    • 8d Mukherjee A, Milstein D. ACS Catal. 2018; 8: 11435
    • 9a Elangovan S, Topf C, Fischer S, Jiao H, Spannenberg A, Baumann W, Ludwig R, Junge K, Beller M. J. Am. Chem. Soc. 2016; 138: 8809
    • 9b Kallmeier F, Irrgang T, Dietel T, Kempe R. Angew. Chem. Int. Ed. 2016; 55: 11806
    • 9c Elangovan S, Garbe M, Jiao H, Spannenberg A, Junge K, Beller M. Angew. Chem. Int. Ed. 2016; 55: 15364
    • 9d Bruneau-Voisine A, Wang D, Roisnel T, Darcel C, Sortais J.-B. Catal. Commun. 2017; 92: 1
    • 9e Espinosa-Jalapa NA, Nerush A, Shimon LJ. W, Leitus G, Avram L, Ben-David Y, Milstein D. Chem. Eur. J. 2017; 23: 5934
    • 9f van Putten R, Uslamin EA, Garbe M, Liu C, Gonzalez-de-Castro A, Lutz M, Junge K, Hensen EJ. M, Beller M, Lefort L, Pidko EA. Angew. Chem. Int. Ed. 2017; 56: 7531
    • 9g Papa V, Cabrero-Antonino JR, Alberico E, Spanneberg A, Junge K, Junge H, Beller M. Chem. Sci. 2017; 8: 3576
    • 9h Garduño JA, García JJ. ACS Catal. 2019; 9: 392
    • 9i Weber S, Stöger B, Kirchner K. Org. Lett. 2018; 20: 7212
    • 9j Zou Y.-Q, Chakraborty S, Nerush A, Oren D, Diskin-Posner Y, Ben-David Y, Milstein D. ACS Catal. 2018; 8: 8014
    • 9k Kaithal A, Hölscher M, Leitner W. Angew. Chem. Int. Ed. 2018; 57: 13449
    • 9l Kumar A, Janes T, Espinosa-Jalapa NA, Milstein D. Angew. Chem. Int. Ed. 2018; 57: 12076
    • 9m Zubar V, Lebedev Y, Azofra LM, Cavallo L, El-Sepelgy O, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 13439
    • 9n Schneekönig J, Junge K, Beller M. Synlett 2019; 30: 503
    • 9o Ryabchuk P, Stier K, Junge K, Checinski MP, Beller M. J. Am. Chem. Soc. 2019; 141: 16923
    • 9p Das UK, Kumar A, Ben-David Y, Iron MA, Milstein D. J. Am. Chem. Soc. 2019; 141: 12962
    • 9q Wang Y, Zhu L, Shao Z, Li G, Lan Y, Liu Q. J. Am. Chem. Soc. 2019; 141: 17337
    • 9r Ling F, Chen J, Nian S, Hou H, Yi X, Wu F, Xu M, Zhong W. Synlett 2020; 31: 285
    • 10a Elangovan S, Neumann J, Sortais J.-B, Junge K, Darcel C, Beller M. Nat. Commun. 2016; 7: 12641
    • 10b Mastalir M, Glatz M, Gorgas N, Stöger B, Pittenauer E, Allmaier G, Veiros LF, Kirchner K. Chem. Eur. J. 2016; 22: 12316
    • 10c Mukherjee A, Nerush A, Leitus G, Shimon LJ. W, Ben-David Y, Espinosa-Jalapa NA, Milstein D. J. Am. Chem. Soc. 2016; 138: 4298
    • 10d Peña-López M, Piehl P, Elangovan S, Neumann H, Beller M. Angew. Chem. Int. Ed. 2016; 55: 14967
    • 10e Nguyen DH, Trivelli X, Capet F, Paul J.-F, Dumeignil F, Gauvin RM. ACS Catal. 2017; 7: 2022
    • 10f Chakraborty S, Das UK, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2017; 139: 11710
    • 10g Chakraborty S, Gellrich U, Diskin-Posner Y, Leitus G, Avram L, Milstein D. Angew. Chem. Int. Ed. 2017; 56: 4229
    • 10h Bruneau-Voisine A, Wang D, Dorcet V, Roisnel T, Darcel C, Sortais J.-B. J. Catal. 2017; 347: 57
    • 10i Jana A, Reddy CB, Maji B. ACS Catal. 2018; 8: 9226
    • 10j Jang YK, Krückel T, Rueping M, El-Sepelgy O. Org. Lett. 2018; 20: 7779
    • 10k Liu T, Wang L, Wu K, Yu Z. ACS Catal. 2018; 8: 7201
    • 10l Kulkarni NV, Brennessel WW, Jones WD. ACS Catal. 2018; 8: 997
    • 10m Fertig R, Irrgang T, Freitag F, Zander J, Kempe R. ACS Catal. 2018; 8: 8525
    • 10n Barman MK, Waiba S, Maji B. Angew. Chem. Int. Ed. 2018; 57: 9126
    • 10o Zhang G, Irrgang T, Dietel T, Kallmeier F, Kempe R. Angew. Chem. Int. Ed. 2018; 57: 9131
    • 10p Barman MK, Waiba S, Maji B. Synlett 2019; 30: 12
    • 11a Mastalir M, Glatz M, Pittenauer E, Allmaier G, Kirchner K. J. Am. Chem. Soc. 2016; 138: 15543
    • 11b Deibl N, Kempe R. Angew. Chem. Int. Ed. 2017; 56: 1663
    • 11c Kallmeier F, Dudziec B, Irrgang T, Kempe R. Angew. Chem. Int. Ed. 2017; 56: 7261
    • 11d Borghs JC, Lebedev Y, Rueping M, El-Sepelgy O. Org. Lett. 2019; 21: 70
    • 11e Daw P, Kumar A, Espinosa-Jalapa NA, Diskin-Posner Y, Ben-David Y, Milstein D. ACS Catal. 2018; 8: 7734
    • 11f Das K, Mondal A, Srimani D. J. Org. Chem. 2018; 83: 9553
    • 11g Das K, Mondal A, Srimani D. Chem. Commun. 2018; 54: 10582
    • 12a Jin C, Yao M, Liu H, Lee C.-F, Ji J. Renewable Sustainable Energy Rev. 2011; 15: 4080
    • 12b Anbarasan P, Baer ZC, Sreekumar S, Gross E, Binder JB, Blanch HW, Clark DS, Toste FD. Nature 2012; 491: 235
  • 13 Fu S, Shao Z, Wang Y, Liu Q. J. Am. Chem. Soc. 2017; 139: 11941
  • 14 Aitchison H, Wingad RL, Wass DF. ACS Catal. 2016; 6: 7125
    • 15a Ueda W, Kuwabara T, Ohshida T, Morikawa Y. J. Chem. Soc., Chem. Commun. 1990; 1558
    • 15b Carlini C, Di Girolamo M, Macinai A, Marchionna M, Noviello M, Raspolli Galletti AM, Sbrana G. J. Mol. Catal. A: Chem. 2003; 200: 137
    • 15c Olson ES, Sharma RK, Aulich TR. Appl. Biochem. Biotechnol. 2004; 115: 913
    • 15d Liu Q, Xu G, Wang X, Mu X. Green Chem. 2016; 18: 2811
    • 15e Liu Q, Xu G, Wang Z, Liu X, Wang X, Dong L, Mu X, Liu H. ChemSusChem 2017; 10: 4748
  • 16 Liu Y, Shao Z, Wang Y, Xu L, Yu Z, Liu Q. ChemSusChem 2019; 12: 3069
  • 17 Gunanathan C, Milstein D. Science 2013; 341: 1229712
    • 18a Balaraman E, Khaskin E, Leitus G, Milstein D. Nat. Chem. 2013; 5: 122
    • 18b Sawama Y, Morita K, Asai S, Kozawa M, Tadokoro S, Nakajima J, Monguchi Y, Sajiki H. Adv. Synth. Catal. 2015; 357: 1205
    • 18c Wang X, Wang C, Liu Y, Xiao J. Green Chem. 2016; 18: 4605
    • 18d Fujita K.-i, Tamura R, Tanaka Y, Yoshida M, Onoda M, Yamaguchi R. ACS Catal. 2017; 7: 7226
  • 19 Nguyen DH, Morin Y, Zhang L, Trivelli X, Capet F, Paul S, Desset S, Dumeignil F, Gauvin RM. ChemCatChem 2017; 9: 2652
  • 20 Shao Z, Wang Y, Liu Y, Wang Q, Fu X, Liu Q. Org. Chem. Front. 2018; 5: 1248
    • 21a Obora Y, Anno Y, Okamoto R, Matsu-ura T, Ishii Y. Angew. Chem. Int. Ed. 2011; 50: 8618
    • 21b Manojveer S, Forrest SJ. K, Johnson MT. Chem. Eur. J. 2018; 24: 803
  • 22 Wang Y, Shao Z, Zhang K, Liu Q. Angew. Chem. Int. Ed. 2018; 57: 15143
  • 23 Stoermer R, Thier C. Ber. Dtsch. Chem. Ges. 1925; 58: 2607
    • 24a Kong S, Zhang L, Dai X, Tao L, Xie C, Shi L, Wang M. Adv. Synth. Catal. 2015; 357: 2453
    • 24b Yuan Q, Yao K, Liu D, Zhang W. Chem. Commun. 2015; 51: 11834
    • 25a Toshitsugu O, Masakatsu K. Bull. Chem. Soc. Jpn. 1966; 39: 1995
    • 25b Gibson TW, Erman WF. J. Org. Chem. 1972; 37: 1148