Synlett 2021; 32(05): 521-524
DOI: 10.1055/s-0040-1707161
cluster
The Power of Transition Metals: An Unending Well-Spring of New Reactivity
© Georg Thieme Verlag Stuttgart · New York

Zinc-Catalyzed Transacetalization of N,O-Acetals into N,N-Acetals with Benzotriazoles, Indazoles, and Azides

Sang Ik Shin
,
Nguyen H. Nguyen
,
Jangbin Im
,
Department of Chemistry, Center for New Directions in Organic Synthesis (CNOS) and Research Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea   Email: sshin@hanyang.ac.kr
› Author Affiliations
This work was supported by the National Research Foundation of Korea (Grant Numbers NRF-2012M3A7B4049653, NRF-2014–011165, and NRF-2017R1A2B4010888).
Further Information

Publication History

Received: 02 May 2020

Accepted after revision: 31 May 2020

Publication Date:
23 June 2020 (online)


This paper is dedicated to Professor Barry M. Trost to celebrate his career on the occasion of 20 years of Science of Synthesis.

Abstract

N,O-Acetals obtained from β-oxidation of ynamides underwent transacetalization with benzotriazoles, leading to N,N-acetals. The Zn(OTf)2 efficiently catalyzed the process, and the reaction is further accelerated in hexafluoroisopropanol, providing a single N1-regiosiomer. The transacetalization conditions developed could be extended to other N-donors, such as 1H-indazole and TMSN3 to afford the corresponding N,N-acetals.

Supporting Information

 
  • References and Notes

    • 1a Ren Y, Zhang L, Zhou C. -H, Geng R. -X. Med. Chem. 2014; 4: 640
    • 1b Suma BV, Natesh NN, Madhavan V. J. Chem. Pharm. Res. 2011; 3: 375
    • 2a Xu K, Thieme N, Breit B. Angew. Chem. Int. Ed. 2014; 53: 7268
    • 2b Chen S.-W, Zhang G.-C, Lou Q.-X, Cui W, Zhang S.-S, Hu W.-H, Zhao J.-L. ChemCatChem 2015; 7: 1935
    • 2c Duan H, Yan W, Sengupta S, Shi X. Bioorg. Med. Chem. Lett. 2009; 19: 3899
    • 2d Yan W, Ye X, Weise K, Petersen JL, Shi X. Chem. Commun. 2012; 48: 3521
  • 3 Wang K, Chen P, Ji D, Zhang X, Xu G, Sun J. Angew. Chem. Int. Ed. 2018; 57: 12489
    • 4a Katritzky AR, Chang H.-X, Wu J. Synthesis 1994; 907
    • 4b Niedermann K, Früh N, Senn R, Czarnieckim B, Verel R, Togni A. Angew. Chem. Int. Ed. 2012; 51: 6511
    • 4c Yan W, Wang Q, Chen Y, Petersen JL, Shi X. Org. Lett. 2010; 12: 3308
    • 5a Wu J, Zhou Y, Zhou Y, Chiang C.-W, Lei A. ACS Catal. 2017; 7: 8320
    • 5b Aruri H, Singh U, Sharma S, Gudup S, Bhogal M, Kumar S, Singh D, Gupta VK, Kant R, Wishwakarma RA, Singh PP. J. Org. Chem. 2015; 80: 1929
    • 6a Liu Y, Yan W, Chen Y, Petersen JL, Shi X. Org. Lett. 2008; 10: 5389
    • 6b Lee H.-G, Won J.-E, Kim M.-J, Park S.-E, Jung K.-J, Kim BR, Lee S.-G, Yoon Y.-J. J. Org. Chem. 2009; 74: 5675

      For reviews, see:
    • 7a Yeom H.-S, Shin S. Acc. Chem. Res. 2014; 47: 966
    • 7b Zhang L. Acc. Chem. Res. 2014; 47: 877

    • For selected examples, see:
    • 7c Arava S, Kumar JN, Maksymenko S, Iron MA, Parida KN, Fristrup P, Szpilman AM. Angew. Chem. Int. Ed. 2017; 56: 2599
    • 7d Li L, Shu C, Zhou B, Yu Y.-F, Xiao X.-Y, Ye LW. Chem. Sci. 2014; 5: 4057
    • 7e Li L, Zhou B, Wang Y.-H, Shu C, Pan Y.-F, Lu X, Ye LW. Angew. Chem. Int. Ed. 2015; 54: 8245
    • 7f Kaldre D, Maryasin B, Kaiser D, Gajsek O, González L, Maulide N. Angew. Chem. Int. Ed. 2017; 56: 2212

      For Brønsted acid catalyzed approaches, see:
    • 8a Patil DV, Shin S. Asian J. Org. Chem. 2019; 8: 63
    • 8b Patil DV, Kim SW, Nguyen QH, Kim H, Wang S, Hoang T, Shin S. Angew. Chem. Int. Ed. 2017; 56: 3670
    • 8c Kim SW, Um T.-W, Shin S. Chem. Commun. 2017; 53: 2733
    • 8d Nguyen QH, Nguyen NH, Kim H, Shin S. Chem. Sci. 2019; 10: 8799
    • 8e Um T.-W, Lee G, Shin S. Org. Lett. 2020; 22: 1985

    • For the Zn-catalyzed addition of N-hydroxybenzotriazoles, see:
    • 8f Im J, Shin SI, Cho C.-G, Shin S. J. Org. Chem. 2020; 85: 6935
  • 9 Nguyen NH, Nguyen QH, Biswas S, Patil DV, Shin S. Org. Lett. 2019; 21: 9009
  • 10 Singh AS, Kumar D, Mishra N, Tiwari VK. ChemistrySelect 2017; 2: 224
  • 11 Shao C, Wang X, Zhang Q, Luo S, Zhao J, Hu Y. J. Org. Chem. 2011; 76: 6832
  • 12 Synthesis of 3 – Typical Procedure for 3a In a 4 mL vial, the N,O-acetal 1a (38.2 mg, 0.1 mmol), benzotriazole (2, 35.7 mg, 0.3 mmol), and Zn(OTf)2 (3.6 mg, 0.01 mmol) were dissolved in hexafluoroisopropanol (HFIP, 1 mL). The reaction mixture was then heated to 60 °C for 9 h, when the reaction was judged to be complete (TLC). The mixture was concentrated to dryness, and the residue was purified by SiO2 flash chromatography (EtOAc/n-hexane/CH2Cl2 = 1:15:5) to afford 3a (30 mg, 87%) as a white solid; mp 108–110 ℃. 1H NMR (400 MHz, CDCl3): δ = 8.11 (d, J = 9.2 Hz, 1 H), 7.92 (s, 1 H), 7.83 (d, J = 8.4 Hz, 1 H), 7.79 (d, J = 7.3 Hz, 2 H), 7.63 (t, J = 15.4 Hz, 1 H), 7.55 (t, J = 14.9 Hz, 1 H), 7,48 (t, J = 15.4 Hz, 1 H), 7.38 (t, J = 13.9 Hz, 2 H), 3.10 (s, 3 H), 2.94 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 189.0, 145.8, 134.5, 133.5, 132.4, 129.1, 128.5, 125.0, 120.5, 109.7, 71.4, 38.9, 31.3. HRMS (EI): m/z [M]+ calcd for C16H16N4O3S+: 344.0938; found: 344.0941.