Synlett, Table of Contents Synlett 2021; 32(03): 316-320DOI: 10.1055/s-0040-1707262 letter Palladium-Catalyzed Synthesis of Polysubstituted Pyrazoles by Ring-Opening Reactions of 2H-Azirines with Hydrazones Jiaan Shao‡ a School of Medicine, Zhejiang University City College, Hangzhou, 310015, P. R. of China , Ke Shu‡ b College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. of China , Shuangrong Liu b College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. of China , Huajian Zhu a School of Medicine, Zhejiang University City College, Hangzhou, 310015, P. R. of China , Jiankang Zhang a School of Medicine, Zhejiang University City College, Hangzhou, 310015, P. R. of China , Chong Zhang a School of Medicine, Zhejiang University City College, Hangzhou, 310015, P. R. of China , Ling-Hui Zeng a School of Medicine, Zhejiang University City College, Hangzhou, 310015, P. R. of China , Wenteng Chen∗ b College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. of China› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Abstract A palladium–catalyzed ring-opening reaction of 2H-azirines with hydrazones has been developed. This protocol provides an alternative route for the construction of various polysubstituted pyrazoles with a wide substrate scope. Moreover, a plausible mechanism is proposed for this reaction, which should further enrich the chemical conversion of 2H-azirines. Key words Key wordspalladium catalysis - ring opening - azirines - hydrazones - pyrazoles Full Text References References and Notes For reviews on 2H-azirine chemistry, see: 1a Nakamura S. Chem. Asian J. 2019; 14: 1323 1b Huang C.-Y, Doyle AG. Cm. Rev. 2014; 114: 8153 1c Khlebnikov AF, Novikov MS. Tetrahedron 2013; 69: 3363 1d Palacios F, Ochoa de Retana AM, Martínez de Marigorta E, de los Santos JM. Eur. J. Org. Chem. 2001; 2001: 2401 2a Sujatha C, Bhatt CS, Ravva MK, Suresh AK, Namitharan K. Org. Lett. 2018; 20: 3241 2b Prechter A, Henrion G, Faudot dit Bel P, Gagosz F. Angew. Chem. Int. Ed. 2014; 53: 4959 2c Jiang Y, Park C.-M, Loh T.-P. Org. Lett. 2014; 16: 3432 2d Loy NS. Y, Singh A, Xu X, Park C.-M. Angew. Chem. Int. Ed. 2013; 52: 2212 3a Loy NS. Y, Kim S, Park C.-M. Org. Lett. 2015; 17: 395 3b Ryu T, Baek Y, Lee PH. J. Org. Chem. 2015; 80: 2376 ; corrigendum: J. Org. Chem. 2015, 80, 9804 3c Wang Y, Lei X, Tang Y. Chem. Commun. 2015; 51: 4507 4a Zhu L, Yu Y, Mao Z, Huang X. Org. Lett. 2015; 17: 30 4b Li T, Xin X, Wang C, Wang D, Wu F, Li X, Wan B. Org. Lett. 2014; 16: 4806 4c Filho Faria dos Santos P, Schuchardt U. Angew. Chem. Int. Ed. 1977; 16: 647 4d Zhao M.-N, Ren Z.-H, Yang D.-S, Guan Z.-H. Org. Lett. 2018; 20: 1287 4e Li T, Yan H, Li X, Wang C, Wan B. J. Org. Chem. 2016; 81: 12031 4f Galenko EE, Shakirova FM, Bodunov VA, Novikov MS, Khlebnikov AF. Org. Biomol. Chem. 2020; 18: 2283 5a Taber DF, Tian WW. J. Am. Chem. Soc. 2006; 128: 1058 5b Jana S, Clements MD, Sharp BK, Zheng N. Org. Lett. 2010; 12: 3736 5c Thangaraj M, Bhojgude SS, Jain S, Gonnade RG, Biju AT. J. Org. Chem. 2016; 81: 8604 5d Khaidarov AR, Rostovskii NV, Zolotarev AA, Khlebnikov AF, Novikov MS. J. Org. Chem. 2019; 84: 3743 6a Rossa TA, Fantinel M, Bortoluzzi AJ, Sá MM. Eur. J. Org. Chem. 2018; 2018: 4171 6b Angyal A, Demjén A, Wölfling J, Puskás LG, Kanizsai I. J. Org. Chem. 2020; 85: 3587 6c Shi S, Xu K, Jiang C, Ding Z. J. Org. Chem. 2018; 83: 14791 6d Cardoso AL, Lemos A, Pinhoe e Melo TM. V. D. Eur. J. Org. Chem. 2014; 2014: 5159 6e Auricchio S, Grassi S, Malpezzi L, Sartori AS, Truscello AM. Eur. J. Org. Chem. 2001; 1183 6f Müller F, Mattay J. Angew. Chem. Int. Ed. 1991; 30: 1336 7a Serebryannikova AV, Galenko EE, Novikov MS, Khlebnikov AF. J. Org. Chem. 2019; 84: 15567 7b Duan X, Yang K, Lu J, Kong X, Liu N, Ma J. Org. Lett. 2017; 19: 3370 7c Ning Y, Otani Y, Ohwada T. J. Org. Chem. 2017; 82: 6313 7d Zeng T.-T, Xuan J, Ding W, Wang K, Lu L.-Q, Xiao W.-J. Org. Lett. 2015; 17: 4070 7e Shah RS, Navathel SS, Dikundwar AG, Row TN. G, Vasella AT. Eur. J. Org. Chem. 2013; 2013: 264 8a Zhou W, Zhang M, Li H, Chen W. Org. Lett. 2017; 19: 10 8b Sakharov AP, Rostovskii NV, Khlebnikov AF, Panikorovskii TL, Novikov MS. Org. Lett. 2019; 21: 3615 8c Pawar SK, Sahani L, Liu R.-S. Chem. Eur. J. 2015; 21: 10843 8d Molina A, Díaz-Tendero S, Adrio J, Carretero JC. Chem. Commun. 2020; 56: 5050 8e Smetanin IA, Agafonova AV, Rostovskii NV, Khlebnikov AF, Yufit DS, Novikov MS. Org. Chem. Front. 2020; 7: 525 9a Havrylyuk D, Zimenkovsky B, Vasylenko O, Gzella A, Lesyk R. J. Med. Chem. 2012; 55: 8630 9b Liu J.-J, Sun J, Fang Y.-B, Yang Y.-A, Jiao R.-H, Zhu H.-L. Org. Biomol. Chem. 2014; 12: 998 9c Habeeb AG, Praveen Rao PN, Knaus EE. J. Med. Chem. 2001; 44: 3039 9d Dai H.-X, Stepan AF, Plummer MS, Zhang Y.-H, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 7222 10 Pérez-Fernández R, Goya P, Elguero J. ARKIVOC 2014; 233 11 Ansari A, Ali A, Asif M, Shamsuzzaman S. New J. Chem. 2017; 41: 16 12 Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Molecules 2018; 23: 134 13 Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. Chem. Rev. 2011; 111: 6984 14 Wu F, Zhang M, Zhou W, Chen W, Liu M, Wu H. J. Org. Chem. 2018; 83: 5999 15 Zhao J, Goldman AS, Hartwig JF. Science 2005; 307: 1080 16 Koroleff F. Determination of Total Nitrogen in Natural Waters by Means of Persulfate Oxidation, International Council for the Exploration of the Sea (ICES), Council Meeting (2nd ed.), Paper C:8 1969. 1970 ; ICES: Copenhagen; (accesed Aug 24, 2020) http://ices.dk/sites/pub/CM%20Doccuments/1969/C/1969_C8.pdf 17 Polysubstituted Pyrazoles 3a–t; General ProcedureThe appropriate 2H-azirine (1; 1.05 mmol), hydrazone 2 (1.0 mmol), Pd(OAc)2 (10 mol%), K2S2O8 (2.0 mmol), CsF (1.0 mmol), and anhyd 1,4-dioxane (6 mL) were sequentially added to a sealed tube under N2, and the mixture was stirred at 100 °C for about 12 h until the reaction was complete (TLC). The mixture was then filtered through diatomite, and the filter cake was washed with EtOAc(10 mL). The filtrate was collected and concentrated under reduced pressure, and the crude product was purified by chromatography [silica gel, PE–EtOAc (40:1)].3-(4-Bromophenyl)-1,4-diphenyl-1H-pyrazole (3a)Yellow solid; yield: 281 mg (75%); mp 113.4–114.7 °C. 1H NMR (500 MHz, DMSO-d 6): δ = 8.78 (s, 1 H), 7.95 (d, J = 7.8 Hz, 2 H), 7.59 (d, J = 8.5 Hz, 2 H), 7.54 (t, J = 7.9 Hz, 2 H), 7.45 (d, J = 8.5 Hz, 2 H), 7.41–7.31 (m, 6 H). 13C NMR (125 MHz, DMSO-d 6): δ = 148.2, 139.3, 132.2, 132.1, 131.4, 129.9, 129.5, 128.6, 128.3, 128.3, 127.1, 126.5, 122.2, 121.3, 118.4. HRMS (ESI): m/z [M+ H]+ calcd for C21H16BrN2: 375.0491; found: 375.0492. Supplementary Material Supplementary Material Supporting Information