J Knee Surg 2021; 34(01): 002-010
DOI: 10.1055/s-0040-1716357
Special Focus Section

Articular Cartilage Repair in the Knee: Postoperative Imaging

Brian W. Yang
1   Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York
,
Christopher M. Brusalis
1   Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York
,
Peter D. Fabricant
1   Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York
3   Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
,
Harry G. Greditzer IV
2   Division of Pediatric Orthopaedic Surgery, Hospital for Special Surgery, New York, New York
› Author Affiliations
Funding None.

Abstract

Diagnostic and therapeutic advancements have improved clinical outcomes for patients with focal chondral injuries of the knee. An increased number and complexity of surgical treatment options have, in turn, resulted in a commensurate proliferation of patients requiring postoperative evaluation and management. In addition to patient-reported clinical outcomes, magnetic resonance imaging (MRI) offers clinicians with noninvasive, objective data to assist with postoperative clinical decision making. However, successful MRI interpretation in this setting is clinically challenging; it relies upon an understanding of the evolving and procedure-specific nature of normal postoperative imaging. Moreover, further research is required to better elucidate the correlation between MRI findings and long-term clinical outcomes. This article focuses on how specific morphologic features identified on MRI can be utilized to evaluate patients following the most commonly performed cartilage repair surgeries of the knee.



Publication History

Received: 04 June 2020

Accepted: 21 July 2020

Article published online:
08 September 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 2002; 18 (07) 730-734
  • 2 Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 1997; 13 (04) 456-460
  • 3 Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 2007; 14 (03) 177-182
  • 4 Buckwalter JA. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 1998; 28 (04) 192-202
  • 5 Sharifi AM, Moshiri A, Oryan A. Articular cartilage. Curr Orthop Pract 2016; 27 (06) 644-665
  • 6 Medvedeva EV, Grebenik EA, Gornostaeva SN. et al. Repair of damaged articular cartilage: current approaches and future directions. Int J Mol Sci 2018; 19 (08) E2366
  • 7 Liu YW, Tran MD, Skalski MR. et al. MR imaging of cartilage repair surgery of the knee. Clin Imaging 2019; 58: 129-139
  • 8 Choi YS, Potter HG, Chun TJ. MR imaging of cartilage repair in the knee and ankle. Radiographics 2008; 28 (04) 1043-1059
  • 9 Crema MD, Roemer FW, Marra MD. et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011; 31 (01) 37-61
  • 10 Argentieri EC, Burge AJ, Potter HG. Magnetic resonance imaging of articular cartilage within the knee. J Knee Surg 2018; 31 (02) 155-165
  • 11 Potter HG, Koff MF. MR imaging tools to assess cartilage and joint structures. HSS J 2012; 8 (01) 29-32
  • 12 Binks DA, Hodgson RJ, Ries ME. et al. Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br J Radiol 2013; 86 (1023): 20120163
  • 13 Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 1998; 80 (09) 1276-1284
  • 14 Guermazi A, Roemer FW, Alizai H. et al. State of the art: MR imaging after knee cartilage repair surgery. Radiology 2015; 277 (01) 23-43
  • 15 Bobić V. ICRS Articular Cartilage Imaging Committee. ICRS MR imaging protocol for knee articular cartilage. Wetzikon, Switzerland: International Cartilge Repair Society; 2000: 12
  • 16 Wong S, Steinbach L, Zhao J, Stehling C, Ma CB, Link TM. Comparative study of imaging at 3.0 T versus 1.5 T of the knee. Skeletal Radiol 2009; 38 (08) 761-769
  • 17 Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 2009; 250 (03) 839-848
  • 18 Hayashi D, Li X, Murakami AM, Roemer FW, Trattnig S, Guermazi A. Understanding magnetic resonance imaging of knee cartilage repair: a focus on clinical relevance. Cartilage 2018; 9 (03) 223-236
  • 19 Wuennemann F, Rehnitz C, Weber M-A. Imaging of the knee following repair of focal articular cartilage lesions. Semin Musculoskelet Radiol 2018; 22 (04) 377-385
  • 20 Domayer SE, Kutscha-Lissberg F, Welsch G. et al. T2 mapping in the knee after microfracture at 3.0 T: correlation of global T2 values and clinical outcome - preliminary results. Osteoarthritis Cartilage 2008; 16 (08) 903-908
  • 21 Lansdown DA, Wang K, Cotter E, Davey A, Cole BJ. Relationship between quantitative MRI biomarkers and patient-reported outcome measures after cartilage repair surgery: a systematic review. Orthop J Sports Med 2018; 6 (04) 2325967118765448
  • 22 Jungmann PM, Brucker PU, Baum T. et al. Bilateral cartilage T2 mapping 9 years after Mega-OATS implantation at the knee: a quantitative 3T MRI study. Osteoarthritis Cartilage 2015; 23 (12) 2119-2128
  • 23 Mithoefer K, Williams III RJ, Warren RF. et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 2005; 87 (09) 1911-1920
  • 24 Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003; 19 (05) 477-484
  • 25 Alparslan L, Winalski CS, Boutin RD, Minas T. Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskelet Radiol 2001; 5 (04) 345-363
  • 26 Chang G, Sherman O, Madelin G, Recht M, Regatte R. MR imaging assessment of articular cartilage repair procedures. Magn Reson Imaging Clin N Am 2011; 19 (02) 323-337
  • 27 White LM, Sussman MS, Hurtig M, Probyn L, Tomlinson G, Kandel R. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology 2006; 241 (02) 407-414
  • 28 de Mello R, Ma Y, Ji Y, Du J, Chang EY. Quantitative MRI musculoskeletal techniques: an update. AJR Am J Roentgenol 2019; 213 (03) 524-533
  • 29 Welsch GH, Mamisch TC, Domayer SE. et al. Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures--initial experience. Radiology 2008; 247 (01) 154-161
  • 30 Theologis AA, Schairer WW, Carballido-Gamio J, Majumdar S, Li X, Ma CB. Longitudinal analysis of T1ρ and T2 quantitative MRI of knee cartilage laminar organization following microfracture surgery. Knee 2012; 19 (05) 652-657
  • 31 Tao H, Li H, Hua Y, Chen Z, Feng X, Chen S. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture treatment for full-thickness cartilage defect models in rabbit knee joints: correlations with histological findings. Skeletal Radiol 2015; 44 (03) 393-402
  • 32 Muller S, Breederveld RS, Tuinebreijer WE. Results of osteochondral autologous transplantation in the knee. Open Orthop J 2010; 4 (02) 111-114 DOI: Doi: 10.2174/1874325001004020111.
  • 33 Filardo G, Kon E, Perdisa F, Balboni F, Marcacci M. Autologous osteochondral transplantation for the treatment of knee lesions: results and limitations at two years' follow-up. Int Orthop 2014; 38 (09) 1905-1912
  • 34 Yamashita F, Sakakida K, Suzu F, Takai S. The transplantation of an autogeneic osteochondral fragment for osteochondritis dissecans of the knee. Clin Orthop Relat Res 1985; (201) 43-50
  • 35 Bobić V. Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study. Knee Surg Sports Traumatol Arthrosc 1996; 3 (04) 262-264
  • 36 Link TM, Mischung J, Wörtler K, Burkart A, Rummeny EJ, Imhoff AB. Normal and pathological MR findings in osteochondral autografts with longitudinal follow-up. Eur Radiol 2006; 16 (01) 88-96
  • 37 Salzmann GM, Paul J, Bauer JS. et al. T2 assessment and clinical outcome following autologous matrix-assisted chondrocyte and osteochondral autograft transplantation. Osteoarthritis Cartilage 2009; 17 (12) 1576-1582
  • 38 Williams III RJ, Ranawat AS, Potter HG, Carter T, Warren RF. Fresh stored allografts for the treatment of osteochondral defects of the knee. J Bone Joint Surg Am 2007; 89 (04) 718-726
  • 39 Zouzias IC, Bugbee WD. Osteochondral allograft transplantation in the knee. Sports Med Arthrosc Rev 2016; 24 (02) 79-84
  • 40 Sherman SL, Garrity J, Bauer K, Cook J, Stannard J, Bugbee W. Fresh osteochondral allograft transplantation for the knee: current concepts. J Am Acad Orthop Surg 2014; 22 (02) 121-133
  • 41 Familiari F, Cinque ME, Chahla J. et al. Clinical outcomes and failure rates of osteochondral allograft transplantation in the knee: a systematic review. Am J Sports Med 2018; 46 (14) 3541-3549
  • 42 Chang EY, Pallante-Kichura AL, Bae WC. et al. Development of a comprehensive osteochondral allograft mri scoring system (OCAMRISS) with histopathologic, micro-computed tomography, and biomechanical validation. Cartilage 2014; 5 (01) 16-27
  • 43 Meric G, Gracitelli GC, McCauley JC. et al. Osteochondral allograft MRI scoring system (OCAMRISS) in the knee: interobserver agreement and clinical application. Cartilage 2015; 6 (03) 142-149
  • 44 Chang EY, Du J, Chung CB. UTE imaging in the musculoskeletal system. J Magn Reson Imaging 2015; 41 (04) 870-883
  • 45 Ackermann J, Merkely G, Shah N, Gomoll AH. Decreased graft thickness is associated with subchondral cyst formation after osteochondral allograft transplantation in the knee. Am J Sports Med 2019; 47 (09) 2123-2129
  • 46 Balazs GC, Wang D, Burge AJ, Williams III RJ. Fluid imbibition at the bone-cartilage interface is associated with need for early chondroplasty following osteochondral allografting of the knee. J Clin Orthop Trauma 2019; 10 (Suppl. 01) S13-S19
  • 47 Krill M, Early N, Everhart JS, Flanigan DC. Autologous chondrocyte implantation (ACI) for knee cartilage defects: a review of indications, technique, and outcomes. JBJS Rev 2018; 6 (02) e5
  • 48 Brown WE, Potter HG, Marx RG, Wickiewicz TL, Warren RF. Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res 2004; (422) 214-223
  • 49 Potter HG, Foo LF. Magnetic resonance imaging of articular cartilage: trauma, degeneration, and repair. Am J Sports Med 2006; 34 (04) 661-677
  • 50 Schreiner MM, Raudner M, Marlovits S. et al. The MOCART (magnetic resonance observation of cartilage repair tissue) 2.0 knee score and atlas. Cartilage 2019; (e-pub ahead of print) DOI: 10.1177/1947603519865308.
  • 51 Kreuz PC, Steinwachs M, Erggelet C. et al. Classification of graft hypertrophy after autologous chondrocyte implantation of full-thickness chondral defects in the knee. Osteoarthritis Cartilage 2007; 15 (12) 1339-1347
  • 52 Marlovits S, Striessnig G, Resinger CT. et al. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 2004; 52 (03) 310-319
  • 53 Trattnig S, Millington SA, Szomolanyi P, Marlovits S. MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol 2007; 17 (01) 103-118
  • 54 Welsch GH, Zak L, Mamisch TC. et al. Advanced morphological 3D magnetic resonance observation of cartilage repair tissue (MOCART) scoring using a new isotropic 3D proton-density, turbo spin echo sequence with variable flip angle distribution (PD-SPACE) compared to an isotropic 3D steady-state free precession sequence (True-FISP) and standard 2D sequences. J Magn Reson Imaging 2011; 33 (01) 180-188
  • 55 Anderson DE, Williams III RJ, DeBerardino TM. et al. Magnetic resonance imaging characterization and clinical outcomes after neocart surgical therapy as a primary reparative treatment for knee cartilage injuries. Am J Sports Med 2017; 45 (04) 875-883