Synlett 2022; 33(14): 1458-1462
DOI: 10.1055/s-0040-1719867
cluster
Organic Chemistry in Thailand

Mechanochemical Synthesis of 2,5-Disubstituted 1,3,4-Oxadiazoles Mediated by PPh3-TCCA

Dolnapa Yamano
a   Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
,
Nittaya Wiriya
a   Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
,
a   Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
b   Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
,
Sirawit Wet-osot
c   Medical Life Science Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
,
Mookda Pattarawarapan
a   Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
b   Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
› Author Affiliations
This work is partially supported by Chiang Mai University, Thailand and The Thailand Research Fund through the Royal Golden Jubilee (RGJ) Ph.D. Programme (PHD/0023/2559 to D.Y. and PHD/0072/2559 to N.W.).


Abstract

Mechanochemical synthesis of 2,5-disubstituted 1,3,4-oxadiazoles was developed as an environmentally benign alternative to conventional solvent-based methods. In the presence of triphenylphosphine and trichloroisocyanuric acid, N-acylbenzotriazoles condense with acylhydrazides leading to oxadiazoles derivatives in good to excellent yields within minutes. The approach circumvents the need for strictly anhydrous conditions, external heating, long reaction times, as well as tedious multistep procedures. A range of substrates with reactive functionalities was also well tolerated.

Supporting Information



Publication History

Received: 08 November 2021

Accepted after revision: 20 December 2021

Article published online:
18 January 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Kumar KA, Jayaroopa P, Govindappa VK. Int. J. ChemTech Res. 2012; 4: 1782
    • 1b Pangal A, Shaikh JA. Res. J. Chem. Sci. 2013; 3: 79
    • 1c Sun J, Makawana JA, Zhu H.-L. Mini-Rev. Med. Chem. 2013; 13: 1725
    • 1d Bhaumik A. Eur. J. Biomed. Pharm. Sci. 2016; 3: 133
    • 1e Paraschivescu CC, Paun A, Matache M. Targets Heterocycl. Syst. 2016; 20: 174
    • 1f Salahuddin Salahuddin, Mazumder A, Yar MS, Mazumder R, Chakraborthy GS, Ahsan MJ, Rahman MU. Synth. Commun. 2017; 47: 1805
    • 1g Chawla G, Naaz B, Siddiqui AA. Mini-Rev. Med. Chem. 2018; 18: 216
    • 1h Sharma D, Salahuddin Salahuddin, Sharma V, Kumar R, Joshi S, Kumari S, Saxena S, Mazumder A, Yar MS, Ahsan MJ. Curr. Top. Med. Chem. 2021; 21: 1377
  • 2 Bajaj S, Asati V, Singh J, Roy PP. Eur. J. Med. Chem. 2015; 97: 124
  • 3 Soares de Oliveira C, Lira BF, Barbosa-Filho JM, Lorenzo JG. F, Filgueiras de Athayde-Filho P. Molecules 2012; 17: 10192
  • 4 Singh AK, Sahu VK. R, Yadav D. Int. J. Pharma Sci. Res. 2011; 2: 135
  • 5 Bostroem J, Hogner A, Llinas A, Wellner E, Plowright AT. J. Med. Chem. 2012; 55: 1817
  • 6 Paun A, Hadade ND, Paraschivescu CC, Matache M. J. Mater. Chem. C 2016; 4: 8596
  • 7 Patel KD, Prajapati SM, Panchal SN, Patel HD. Synth. Commun. 2014; 44: 1859
    • 8a Borg S, Vollinga RC, Labarre M, Payza K, Terenius L, Luthman K. J. Med. Chem. 1999; 42: 4331
    • 8b Friggeri L, Hargrove TY, Wawrzak Z, Blobaum AL, Rachakonda G, Lindsley CW, Villalta F, Nes WD, Botta M, Guengerich FP, Lepesheva GI. J. Med. Chem. 2018; 61: 5679
    • 8c Nakajima K, Chatelain R, Clairmont KB, Commerford R, Coppola GM, Daniels T, Forster CJ, Gilmore TA, Gong Y, Jain M, Kanter A, Kwak Y, Li J, Meyers CD, Neubert AD, Szklennik P, Tedesco V, Thompson J, Truong D, Yang Q, Hubbard BK, Serrano-Wu MH. J. Med. Chem. 2017; 60: 4657
    • 8d Nieddu V, Pinna G, Marchesi I, Sanna L, Asproni B, Pinna GA, Bagella L, Murineddu G. J. Med. Chem. 2016; 59: 10451
    • 8e Chiang IH, Long C.-J, Lin H.-C, Chuang W.-T, Lee J.-J, Lin H.-C. ACS Appl. Mater. Interfaces 2014; 6: 228
    • 9a Achar TK, Bose A, Mal P. Beilstein J. Org. Chem. 2017; 13: 1907
    • 9b Gaspa S, Porcheddu A, Valentoni A, Garroni S, Enzo S, De Luca L. Eur. J. Org. Chem. 2017; 5519
    • 9c Howard JL, Cao Q, Browne DL. Chem. Sci. 2018; 9: 3080
    • 9d Leonardi M, Villacampa M, Menendez JC. Chem. Sci. 2018; 9: 2042
    • 9e Perez-Venegas M, Juaristi E. ACS Sustainable Chem. Eng. 2020; 8: 8881
    • 9f Strukil V. Synlett 2018; 29: 1281
    • 9g Ying P, Yu J, Su W. Adv. Synth. Catal. 2021; 363: 1246
    • 10a Gaspa S, Carraro M, Pisano L, Porcheddu A, De Luca L. Eur. J. Org. Chem. 2019; 3544
    • 10b Mendonca GF, de Mattos MC. S. Curr. Org. Synth. 2013; 10: 820
    • 10c Tilstam U, Weinmann H. Org. Process Res. Dev. 2002; 6: 384
  • 11 Rezazadeh S, Akhlaghinia B, Razavi N. Aust. J. Chem. 2015; 68: 145
  • 12 de Andrade VS. C, de Mattos MC. S. Synthesis 2016; 48: 1381
  • 13 Singh M, Singh AS, Mishra N, Agrahari AK, Tiwari VK. Synthesis 2019; 51: 2183
  • 14 Phakhodee W, Yamano D, Pattarawarapan M. Synlett 2020; 31: 703
  • 15 Ghodsinia SS. E, Akhlaghinia B. Phosphorus, Sulfur Silicon Relat. Elem. 2016; 191: 1
  • 16 Khadem Moghaddam R, Aghapour G. Phosphorus, Sulfur Silicon Relat. Elem. 2021; 196: 398
    • 17a Katritzky AR, Mohapatra PP, Huang L. ARKIVOC 2008; (ix): 62
    • 17b Wang X, Yu H, Xu P, Zheng R. J. Chem. Res. 2005; 595
    • 17c Wang Z, Zhang H, Killian BJ, Jabeen F, Pillai GG, Berman HM, Mathelier M, Sibble AJ, Yeung J, Zhou W, Steel PJ, Hall CD, Katritzky AR. Eur. J. Org. Chem. 2015; 5183
  • 18 Synthesis of 2; General Procedure: N-Acylbenzotriazole (0.54 mmol) was mixed with acylhydrazide (0.54 mmol) and ground in mortar for 2–5 min, during which a few drops of acetone/CH2Cl2 (1:2 v/v, less than 1 μL/mg solids) were added to aid the homogeneous mixing. TCCA (0.0502 g, 0.216 mmol), PPh3 (0.1699 g, 0.648 mmol), and NaHCO3 (0.1361 g, 1.62 mmol) were then added before further grinding until completion of the reaction as indicated by TLC. It is noted that the grinding was stopped intermittently for TLC analysis using a glass capillary tube filled with ethanol for TLC sampling. The semi-solid mixture was then dissolved in acetone (ca. 2 mL), followed by filtration of the solids before solvent removal in vacuo. The crude material was purified by column chromatography using ethyl acetate/hexanes as the eluent to afford pure product. Note: Five new compounds including 2k, 2m, 2n, 2t, 2u were fully characterized, while the spectral data for the known products were consistent with the reported data. tert-Butyl (S)-(1-(5-Phenyl-1,3,4-oxadiazol-2-yl)ethyl)carbamate(2k). Yield: 0.1217g (78%); white solid; mp 117–119 °C; Rf 0.31 (20% EtOAc/hexanes). 1H NMR (400 MHz, CDCl3): δ = 8.02–7.99 (m, 2 H), 7.53–7.44 (m, 3 H), 5.35 (d, J = 8.4 Hz, 1 H), 5.16 (quint, J = 7.2 Hz, 1 H), 1.63 (d, J = 7.2 Hz, 3 H), 1.44 (s, 9 H). Benzyl (S)-(2-Phenyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)ethyl)carbamate(2l). Yield: 0.1702g (79%); yellow solid; mp 109–111 °C; Rf 0.31 (20% EtOAc/hexanes). 1H NMR (400 MHz, CDCl3): δ = 7.97 (d, = 7.2 Hz, 2 H), 7.53 (t, J = 7.2 Hz, 1 H), 7.47 (t, J = 7.6 Hz, 2 H), 7.33–7.19 (m, 10 H), 6.10 (br s, 1 H), 5.49 (dd, J = 15.2, 7.6 Hz, 1 H), 5.13 (dd, J = 15.2, 12.4 Hz, 2 H), 3.43–3.31 (m, 2 H). (9H-Fluoren-9-yl)methyl (S)-(2-(4-(tert-Butoxy)phenyl)-1-(5-phenyl-1,3,4-oxadiazol-2-yl)ethyl)carbamate (2m). Yield: 0.2446g (81%); colorless oil; Rf 0.30 (20% EtOAc/hexanes). 1H NMR (400 MHz, CDCl3): δ = 7.96 (d, J = 8.4 Hz, 2 H), 7.75 (d, J = 7.6 Hz, 2 H), 7.58 (t, J = 7.6 Hz, 2 H), 7.53 (t, J = 7.6 Hz, 1 H), 7.45 (t, J = 7.6 Hz, 2 H), 7.38 (t, J = 7.6 Hz, 2 H), 7.29 (d, J = 7.6 Hz, 2 H), 7.05 (d, J = 7.6 Hz, 2 H), 6.88 (d, J = 8.4 Hz, 2 H), 6.06 (d, J = 9.2 Hz, 1 H), 5.42 (q, J = 7.6 Hz, 1 H), 4.46–4.35 (m, 2 H), 4.19 (t, J = 6.8 Hz, 1 H), 3.29 (d, J = 6.8 Hz, 2 H), 1.27 (s, 9 H). 13C{1H} NMR (100 MHz, CDCl3): δ = 166.0, 165.0, 155.6, 154.6, 143.74, 143.68, 141.3, 131.9, 130.1, 129.9, 129.0, 127.7, 127.1, 126.9, 125.1, 124.3, 123.5, 120.0, 78.5, 67.2, 49.2, 47.1, 39.3, 28.8. HRMS (ESI/QTOF): m/z [M + H]+ calcd for C35H34N3O4: 560.2544; found: 560.2541.2-(5-(4-Fluorobenzyl)-1,3,4-oxadiazol-2-yl)phenol (2t). Yield: 0.0904 g (62%); white solid; mp 97–99 °C; Rf 0.41(10% EtOAc/hexanes).1H NMR (400 MHz, CDCl3): δ = 10.06 (s, 1 H), 7.66 (dd, J = 8.0, 1.6 Hz, 1 H), 7.41 (ddd, J = 8.0,7.2, 1.6 Hz, 1 H), 7.36–7.31 (m, 2 H), 7.10–7.03 (m, 3 H), 6.96 (ddd, J = 8.0,7.2, 1.6 Hz, 1 H), 4.26 (s, 2 H).13C{1H} NMR (100 MHz, CDCl3): δ = 164.9, 164.0, 163.61, 161.16 (d, 1 J C–F = 345.0 Hz), 157.6, 133.7, 130.63, 130.55 (d, 3 J C–F = 8.0 Hz), 129.23, 129.20 (d, 4 J C–F = 3.0 Hz), 126.6, 119.9, 117.6, 116.16, 115.95 (d, 2 J C–F = 21.0 Hz), 108.0, 31.0. HRMS (ESI/QTOF): m/z [M + H]+ calcd for C15H12FN2O2: 271.0877; found: 271.0875.2-(5-(Pyridin-3-yl)-1,3,4-oxadiazol-2-yl)phenol(2u). Yield: 0.0839 g (65%); white solid; mp 132–134 °C; Rf 0.37(20% EtOAc/hexanes 2× developed). 1H NMR (400 MHz, CDCl3): δ = 10.02 (s, 1 H), 9.31 (dd, J = 2.4, 1.2 Hz, 1 H), 8.78 (dd, J = 4.8, 1.2 Hz, 1 H), 8.38 (dt, J = 8.0, 4.8, 1.6 Hz, 1 H), 7.80 (dd, J = 8.0, 7.2, 1.6 Hz, 1 H), 7.49–7.40 (m, 2 H), 7.09 (dd, J = 8.4, 1.2 Hz, 1 H), 7.00 (ddd, J = 8.4,7.2, 1.2 Hz, 1 H). 13C{1H} NMR (100 MHz, CDCl3): δ = 164.7, 161.2, 157.8, 152.8, 148.0, 134.3, 134.1, 126.6, 124.0, 120.1, 119.9, 117.8, 107.7.
    • 19a Freydank A, Janietz S, Schulz B. J. Electroanal. Chem. 1998; 456: 61
    • 19b Wang H, Ryu J.-T, Cao C, Kwon Y. J. Nanosci. Nanotechnol. 2008; 8: 4846
    • 19c Yang C, Song H.-S, Liu D.-B. J. Mater. Sci. 2013; 48: 6719