Subscribe to RSS

DOI: 10.1055/s-0040-1720167
Vicarious Nucleophilic Substitution of Hydrogen: An Excellent Tool for Porphyrin Functionalization
Authors
Abstract
This graphical review addresses the functionalization of porphyrin derivatives. Simple porphyrin modifications (by introduction of an electron-withdrawing group, e.g., NO2, CO-R, into parent porphyrin system or complexation of the core ring with a highly electronegative unit, e.g., SnCl2) afford valuable intermediates in this area of chemistry. They are useful materials for further transformations, as such modifications increase the electrophilic character, thus allowing a broad spectrum of subsequent reactions. Such reactions are often utilized in the first steps of designed syntheses, leading to attractive and useful target porphyrin-like compounds featuring a high degree of complexity. In this regard, the vicarious nucleophilic substitution of hydrogen (VNS) has become one of the methods of choice. Specifically, it involves addition of a carbanion, bearing a leaving group X at the reactive center, to an electrophilic arene at positions occupied by hydrogen to form a σH-adduct. Subsequent base-induced β-elimination of HX then gives the product of nucleophilic substitution of hydrogen. This approach enables the synthesis of numerous porphyrins bearing up to ten new substituents on the meso-aryl rings (attached to positions 5, 10, 15, and 20) and up to six substituents at the β-positions. This graphical review is the first comprehensive account concerning VNS reaction in porphyrins.
Key words
porphyrins - vicarious nucleophilic substitution of hydrogen - carbanions - complexes - nitro group - meso-aryl- and β-functionalizationNucleophilic aromatic substitution applies to many organic reactions in the chemistry of aromatic compounds. The common step during these reactions is the formation of a σ-adduct. The nucleophile can then add to either the position substituted with a potential nucleofuge (e.g., halogen, alkoxy, sulfur-containing moiety, etc.) to give a σX-adduct or to a carbon atom bearing a hydrogen to give a σH-adduct. Thus, there are two general routes for the above reactions to occur: (a) SNAr substitution or (b) transformation involving abstraction of hydrogen. The first process is well-known and has been documented in detail in the literature. [1] Although the formation of σH-adducts is much faster, their subsequent transformation is a more complicated issue because direct departure of a hydride anion does not occur readily, thus the σH-adducts dissociate to give starting materials. Interestingly, in the last decades, there has been a rapid growth in the number of reports on hydrogen substitution by nucleophilic moieties. [1d] [2]
These reactions proceed according to many different mechanisms, i.e., direct departure of a hydride anion (in the Chichibabin reaction), oxidative nucleophilic substitution (ONSH), vicarious nucleophilic substitution of hydrogen (VNS), via nitroso compounds, ANRORC substitution (Addition of the Nucleophile, Ring Opening, and Ring Closure), and cine- and tele-substitution. [1d] [2b] [3] They are discussed in early monographs, [1d] [2b] later review articles, [2c] [3a] [b] [c] and in textbooks. [3d] [e]
In conjunction with the above observations, it should be noted that nucleophilic aromatic substitution of hydrogen is a versatile tool for the introduction of a variety of substituents to electron-deficient aromatic rings. In this way, the synthesis of carbo- and (particularly) heterocyclic ring systems is possible: polysubstituted naphthalene derivatives (from VNS products), [4a] a variety of substituted indoles (via the VNS reaction), [4b] [c] [d] or nitroindoles (ONSH; from m-nitroanilines), [4e] many other natural products (e.g., makaluvamine C, a neoplastic agent isolated from marine sponges), [4f] [g] polycyclic heterocycles (via conversion of σH-adducts involving nitroso compounds), [4h] poly-carbocyclic drugs (VNS), [4i] amino-azines (ANRORC and ONSH mechanisms), [4j] [k] [l] amino-nitroaromatics (VNS, ONSH), [4m] [n] [o] nitrophenols (VNS), [4p] [q] and a variety of multi-substituted electron-deficient arenes/heteroarenes obtained through cine- and tele-substitution. [4r] [s] [t]
One of the more interesting cases of substitution is the vicarious nucleophilic substitution of hydrogen (VNS). It consists of addition of carbanions, O-anions, or N-anions, bearing a leaving group X at the reactive center, to nitroarenes (or other electrophilic arenes) at positions occupied by hydrogen to form σH-adducts, followed by base-induced β-elimination of HX to give products of nucleophilic substitution of hydrogen (Scheme [1]).


This reaction was popularized in the literature by Mąkosza and co-workers. [2a] [c] [3a] [b] [c] [5a] After the VNS reaction concept was formulated, it was utilized many times by other research groups. Its name was coined in 1978. [5a] However, there are several examples of reactions, known for more than 100 years, for which the VNS mechanism should be assigned. The amination of highly active nitroarenes with hydroxylamine is one such example (Scheme [2]). [5b] [c] [d] Herein, the elimination step is probably similar to that observed for the aldol reaction (E1CB mechanism).


For a long time the VNS reaction was not been applied for the derivatization of porphyrins, although it is an excellent tool for this particular purpose. This topic is addressed in this graphical review. We hope that it will stimulate further research on the synthesis and functionalization of valuable porphyrins.




























Conflict of Interest
The authors declare no conflict of interest.
-
References
- 1a
Bunnett JF,
Zahler RE.
Chem. Rev. 1951; 49: 273
Reference Ris Wihthout Link
- 1b
Miller J.
Aromatic Nucleophilic Substitution. Elsevier; Amsterdamm: 1968
Reference Ris Wihthout Link
- 1c
Buncel E,
Crampton MR,
Strauss MJ,
Terrier F.
Electron-Deficient Aromatic- and Heteroaromatic-Base Interactions: The Chemistry of
Anionic Sigma Complexes. Elsevier; Amsterdam: 1984
Reference Ris Wihthout Link
- 1d
Terrier F.
Nucleophilic Aromatic Displacement: The Influence of the Nitro Group. VCH Publishers;
Weinheim: 1991
Reference Ris Wihthout Link
- 2a
Mąkosza M,
Winiarski J.
Acc. Chem. Res. 1987; 20: 282
Reference Ris Wihthout Link
- 2b
Chupakhin ON,
Charushin VN,
van der Plas HC.
Nucleophilic Aromatic Substitution of Hydrogen
. Academic Press; San Diego: 1994
Reference Ris Wihthout Link
- 2c
Mąkosza M.
Russ. Chem. Bull. 1996; 45: 491
Reference Ris Wihthout Link
- 2d
Josephitis CM,
Nguyen HM. H,
McNally A.
Chem Rev. 2023; 123: 7655
Reference Ris Wihthout Link
- 3a
Mąkosza M,
Wojciechowski K.
Chem. Rev. 2004; 104: 2631
Reference Ris Wihthout Link
- 3b
Mąkosza M.
Chem. Soc. Rev. 2010; 39: 2855
Reference Ris Wihthout Link
- 3c
Mąkosza M.
Chem. Eur. J. 2020; 26: 15346
Reference Ris Wihthout Link
- 3d
Carey FA,
Sundberg RJ.
Advanced Organic Chemistry, Parts A and B, 5th ed. Springer; New York: 2007
Reference Ris Wihthout Link
- 3e
March J,
Smith MB.
March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed.
John Wiley & Sons; Hoboken: 2007
Reference Ris Wihthout Link
- 4a
Tyrała A,
Mąkosza M.
Synthesis 1994; 264
Reference Ris Wihthout Link
- 4b
Mąkosza M,
Danikiewicz W,
Wojciechowski K.
Liebigs Ann. Chem. 1988; 203
Reference Ris Wihthout Link
- 4c
Lerman L,
Weinstock-Rosin M,
Nudelman A.
Synthesis 2004; 3043
Reference Ris Wihthout Link
- 4d
Wojciechowski K,
Mąkosza M.
Synthesis 1986; 651
Reference Ris Wihthout Link
- 4e
Mąkosza M,
Barbasiewicz M,
Moskalev N.
Tetrahedron 2004; 60: 347
Reference Ris Wihthout Link
- 4f
Kraus GA,
Selvakumar N.
Synlett 1998; 845
Reference Ris Wihthout Link
- 4g
Kraus GA,
Selvakumar N.
J. Org. Chem. 1998; 63: 9846
Reference Ris Wihthout Link
- 4h
Wróbel Z.
Tetrahedron 1998; 54: 2607
Reference Ris Wihthout Link
- 4i
Murphy RA. Jr,
Cava MP.
Tetrahedron Lett. 1984; 25: 803
Reference Ris Wihthout Link
- 4j
van der Plas HC.
Acc. Chem. Res. 1978; 11: 462
Reference Ris Wihthout Link
- 4k
van der Plas HC.
Tetrahedron 1985; 41: 237
Reference Ris Wihthout Link
- 4l
van der Plas HC,
Woźniak M.
Croat. Chem. Acta 1986; 59: 33
Reference Ris Wihthout Link
- 4m
Mąkosza M,
Białecki M.
J. Org. Chem. 1992; 57: 4784
Reference Ris Wihthout Link
- 4n
Mąkosza M,
Białecki M.
J. Org. Chem. 1998; 63: 4878
Reference Ris Wihthout Link
- 4o
Szpakiewicz B,
Grzegorzek M.
Zh. Org. Khim. 2004; 40: 869
Reference Ris Wihthout Link
- 4p
Mąkosza M,
Sienkiewicz K.
J. Org. Chem. 1990; 55: 4979
Reference Ris Wihthout Link
- 4q
Mąkosza M,
Sienkiewicz K.
J. Org. Chem. 1998; 63: 4199
Reference Ris Wihthout Link
- 4r
Dainter RS,
Suschitzky H,
Wakefield BJ,
Hughes N,
Nelson AJ.
Tetrahedron Lett. 1984; 25: 5693
Reference Ris Wihthout Link
- 4s
Suwiński J,
Świerczek K.
Tetrahedron 2001; 57: 1639
Reference Ris Wihthout Link
- 4t
Błażej S,
Kwast A,
Mąkosza M.
Tetrahedron Lett. 2004; 45: 5413
Reference Ris Wihthout Link
- 5a
Goliński J,
Mąkosza M.
Tetrahedron Lett. 1978; 19: 3495
Reference Ris Wihthout Link
- 5b
Angeli A,
Angelico F.
Gazz. Chim. Ital. 1901; 31: 27
Reference Ris Wihthout Link
- 5c
Price CC,
Voong S.-T.
Org. Synth. 1948; 28: 80
Reference Ris Wihthout Link
- 5d
Price CC,
Voong S.-T.
Org. Synth. Coll. Vol. 3 1955; 664
Reference Ris Wihthout Link
- 6a
Malinovskii VL,
Vodzinskii SV,
Zhilina ZI,
Andronati SA,
Mazepa AV.
Zh. Org. Khim. 1996; 32: 119
Reference Ris Wihthout Link
- 6b
Krattinger B,
Nurco DJ,
Smith KM.
Chem. Commun. 1998; 757
Reference Ris Wihthout Link
- 6c
Richeter S,
Jeandon C,
Ruppert R,
Callot HJ.
Tetrahedron Lett. 2001; 42: 2103
Reference Ris Wihthout Link
- 6d
Ostrowski S,
Shim YK.
Bull. Korean Chem. Soc. 2001; 22: 9
Reference Ris Wihthout Link
- 7a
Ostrowski S,
Mikus A,
Shim YK,
Lee J.-C,
Seo E.-Y,
Lee K.-I,
Olejnik M.
Heterocycles 2002; 57: 1615
Reference Ris Wihthout Link
- 7b
Mąkosza M,
Paszewski M.
Polish J. Chem. 2005; 79: 163
Reference Ris Wihthout Link
- 7c
Ostrowski S.
A.Y.: Basic Sci. & Eng. 2003; 12: 523 ; Chem. Abstr. 2005, 142, 347339p
Reference Ris Wihthout Link
- 7d
Ostrowski S,
Mikus A.
Mol. Divers. 2003; 6: 315
Reference Ris Wihthout Link
- 7e
Ostrowski S,
Mikus A.
Ann. Polish Chem. Soc. 2003; 2: 62
Reference Ris Wihthout Link
- 7f
Ostrowski S,
Mikus A.
Molecules-Molbank 2003; M329
Reference Ris Wihthout Link
- 7g
Ostrowski S,
Mikus A.
Heterocycles 2005; 65: 2339
Reference Ris Wihthout Link
- 7h
Wyrębek P,
Mikus A,
Ostrowski S.
Jordan J. Chem. 2006; 1: 39
Reference Ris Wihthout Link
- 7i
Ostrowski S,
Urbańska N,
Mikus A.
Tetrahedron Lett. 2003; 44: 4373
Reference Ris Wihthout Link
- 7j
Ostrowski S,
Mikus A,
Łopuszyńska B.
Tetrahedron 2004; 60: 11951
Reference Ris Wihthout Link
- 7k
Ostrowski S,
Mikus A,
Borkowska A.
Proceedings of ’The Seventh International Electronic Conference on Synthetic Organic
Chemistry’.
Seijas JA,
Ji D.-C,
Lin S.-K.
Basel,; 2003. [A-002], ISBN 3-906980-13-8 (CD-ROM edition)
Reference Ris Wihthout Link
- 7l
Ostrowski S,
Mikus A.
Proceedings of ’The Seventh International Electronic Conference on Synthetic Organic
Chemistry’.
Seijas JA,
Ji D.-C,
Lin S.-K.
Basel,; 2003. [A-003], ISBN 3-906980-13-8 (CD-ROM edition)
Reference Ris Wihthout Link
- 8a
Ostrowski S,
Grzyb S,
Mikus A.
Helv. Chim. Acta 2007; 90: 2000
Reference Ris Wihthout Link
- 8b
Ostrowski S,
Grzyb S.
Jordan J. Chem. 2007; 2: 297
Reference Ris Wihthout Link
- 8c
Grzyb S,
Ostrowski S.
Jordan J. Chem. 2012; 7: 231
Reference Ris Wihthout Link
- 8d
Katritzky AR,
Laurenzo KS.
J. Org. Chem. 1988; 53: 3978
Reference Ris Wihthout Link
- 8e
Ostrowski S,
Kosmalska M,
Mikus A.
Tetrahedron Lett. 2017; 58: 2011
Reference Ris Wihthout Link
- 8f
Mąkosza M,
Owczarczyk Z.
Tetrahedron Lett. 1987; 28: 3021
Reference Ris Wihthout Link
- 8g
Mąkosza M,
Owczarczyk Z.
J. Org. Chem. 1989; 54: 5094
Reference Ris Wihthout Link
- 9a
Ostrysz S,
Mikus A,
Ostrowski S.
Int. J. Sci. 2014; 3: 99
Reference Ris Wihthout Link
- 9b
Ostrowski S,
Raczko AM.
Helv. Chim. Acta 2005; 88: 974
Reference Ris Wihthout Link
- 9c
Mikus A,
Ostrowski S.
J. Porphyrins Phthalocyanines 2024; 28: 647
Reference Ris Wihthout Link
- 9d
Eddahmi M,
Moura NM. M,
Ramos CI. V,
Bouissane L,
Faustino MA. F,
Cavaleiro JA. S,
Rakib EM,
Neves MG. P. M. S.
Arabian J. Chem. 2020; 13: 5849
Reference Ris Wihthout Link
- 10a
Mikus A,
Rosa M,
Ostrowski S.
Molecules 2019; 24: 838
Reference Ris Wihthout Link
- 10b
Mikus A,
Ostrowski S.
Struct. Chem. 2022; 33: 1251
Reference Ris Wihthout Link
- 10c
Mikus A,
Ostrowski S.
Struct. Chem. 2022; 33: 2261
Reference Ris Wihthout Link
- 10d
Mikus A.
Mendeleev Commun. 2024; 34: 70
Reference Ris Wihthout Link
- 10e
Rosa M,
Ostrowski S.
ChemistrySelect 2022; 7: e202200290
Reference Ris Wihthout Link
- 10f
Mikus A,
Ostrysz S,
Ostrowski S.
Eur. J. Org. Chem. 2025; DOI:
Reference Ris Wihthout Link
- 11a
Ostrowski S,
Grzyb S.
Tetrahedron Lett. 2012; 53: 6355
Reference Ris Wihthout Link
- 11b
Richeter S,
Hadj-Aïssa A,
Taffin C,
van der Lee A,
Leclercq D.
Chem. Commun. 2007; 2148
Reference Ris Wihthout Link
- 11c
Lefebvre J.-F,
Leclercq D,
Gisselbrecht J.-P,
Richeter S.
Eur. J. Org. Chem. 2010; 1912
Reference Ris Wihthout Link
- 11d
Ostrowski S,
Grzyb S,
Godlewski B.
Curr. Org. Chem. 2024; 28: 1542
Reference Ris Wihthout Link
- 11e
Ostrysz S,
Mikus A,
Ostrowski S.
Org. Commun. 2025; 18: 100
Reference Ris Wihthout Link
Corresponding Author
Publication History
Received: 20 November 2024
Accepted after revision: 11 February 2025
Article published online:
29 July 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a
Bunnett JF,
Zahler RE.
Chem. Rev. 1951; 49: 273
Reference Ris Wihthout Link
- 1b
Miller J.
Aromatic Nucleophilic Substitution. Elsevier; Amsterdamm: 1968
Reference Ris Wihthout Link
- 1c
Buncel E,
Crampton MR,
Strauss MJ,
Terrier F.
Electron-Deficient Aromatic- and Heteroaromatic-Base Interactions: The Chemistry of
Anionic Sigma Complexes. Elsevier; Amsterdam: 1984
Reference Ris Wihthout Link
- 1d
Terrier F.
Nucleophilic Aromatic Displacement: The Influence of the Nitro Group. VCH Publishers;
Weinheim: 1991
Reference Ris Wihthout Link
- 2a
Mąkosza M,
Winiarski J.
Acc. Chem. Res. 1987; 20: 282
Reference Ris Wihthout Link
- 2b
Chupakhin ON,
Charushin VN,
van der Plas HC.
Nucleophilic Aromatic Substitution of Hydrogen
. Academic Press; San Diego: 1994
Reference Ris Wihthout Link
- 2c
Mąkosza M.
Russ. Chem. Bull. 1996; 45: 491
Reference Ris Wihthout Link
- 2d
Josephitis CM,
Nguyen HM. H,
McNally A.
Chem Rev. 2023; 123: 7655
Reference Ris Wihthout Link
- 3a
Mąkosza M,
Wojciechowski K.
Chem. Rev. 2004; 104: 2631
Reference Ris Wihthout Link
- 3b
Mąkosza M.
Chem. Soc. Rev. 2010; 39: 2855
Reference Ris Wihthout Link
- 3c
Mąkosza M.
Chem. Eur. J. 2020; 26: 15346
Reference Ris Wihthout Link
- 3d
Carey FA,
Sundberg RJ.
Advanced Organic Chemistry, Parts A and B, 5th ed. Springer; New York: 2007
Reference Ris Wihthout Link
- 3e
March J,
Smith MB.
March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed.
John Wiley & Sons; Hoboken: 2007
Reference Ris Wihthout Link
- 4a
Tyrała A,
Mąkosza M.
Synthesis 1994; 264
Reference Ris Wihthout Link
- 4b
Mąkosza M,
Danikiewicz W,
Wojciechowski K.
Liebigs Ann. Chem. 1988; 203
Reference Ris Wihthout Link
- 4c
Lerman L,
Weinstock-Rosin M,
Nudelman A.
Synthesis 2004; 3043
Reference Ris Wihthout Link
- 4d
Wojciechowski K,
Mąkosza M.
Synthesis 1986; 651
Reference Ris Wihthout Link
- 4e
Mąkosza M,
Barbasiewicz M,
Moskalev N.
Tetrahedron 2004; 60: 347
Reference Ris Wihthout Link
- 4f
Kraus GA,
Selvakumar N.
Synlett 1998; 845
Reference Ris Wihthout Link
- 4g
Kraus GA,
Selvakumar N.
J. Org. Chem. 1998; 63: 9846
Reference Ris Wihthout Link
- 4h
Wróbel Z.
Tetrahedron 1998; 54: 2607
Reference Ris Wihthout Link
- 4i
Murphy RA. Jr,
Cava MP.
Tetrahedron Lett. 1984; 25: 803
Reference Ris Wihthout Link
- 4j
van der Plas HC.
Acc. Chem. Res. 1978; 11: 462
Reference Ris Wihthout Link
- 4k
van der Plas HC.
Tetrahedron 1985; 41: 237
Reference Ris Wihthout Link
- 4l
van der Plas HC,
Woźniak M.
Croat. Chem. Acta 1986; 59: 33
Reference Ris Wihthout Link
- 4m
Mąkosza M,
Białecki M.
J. Org. Chem. 1992; 57: 4784
Reference Ris Wihthout Link
- 4n
Mąkosza M,
Białecki M.
J. Org. Chem. 1998; 63: 4878
Reference Ris Wihthout Link
- 4o
Szpakiewicz B,
Grzegorzek M.
Zh. Org. Khim. 2004; 40: 869
Reference Ris Wihthout Link
- 4p
Mąkosza M,
Sienkiewicz K.
J. Org. Chem. 1990; 55: 4979
Reference Ris Wihthout Link
- 4q
Mąkosza M,
Sienkiewicz K.
J. Org. Chem. 1998; 63: 4199
Reference Ris Wihthout Link
- 4r
Dainter RS,
Suschitzky H,
Wakefield BJ,
Hughes N,
Nelson AJ.
Tetrahedron Lett. 1984; 25: 5693
Reference Ris Wihthout Link
- 4s
Suwiński J,
Świerczek K.
Tetrahedron 2001; 57: 1639
Reference Ris Wihthout Link
- 4t
Błażej S,
Kwast A,
Mąkosza M.
Tetrahedron Lett. 2004; 45: 5413
Reference Ris Wihthout Link
- 5a
Goliński J,
Mąkosza M.
Tetrahedron Lett. 1978; 19: 3495
Reference Ris Wihthout Link
- 5b
Angeli A,
Angelico F.
Gazz. Chim. Ital. 1901; 31: 27
Reference Ris Wihthout Link
- 5c
Price CC,
Voong S.-T.
Org. Synth. 1948; 28: 80
Reference Ris Wihthout Link
- 5d
Price CC,
Voong S.-T.
Org. Synth. Coll. Vol. 3 1955; 664
Reference Ris Wihthout Link
- 6a
Malinovskii VL,
Vodzinskii SV,
Zhilina ZI,
Andronati SA,
Mazepa AV.
Zh. Org. Khim. 1996; 32: 119
Reference Ris Wihthout Link
- 6b
Krattinger B,
Nurco DJ,
Smith KM.
Chem. Commun. 1998; 757
Reference Ris Wihthout Link
- 6c
Richeter S,
Jeandon C,
Ruppert R,
Callot HJ.
Tetrahedron Lett. 2001; 42: 2103
Reference Ris Wihthout Link
- 6d
Ostrowski S,
Shim YK.
Bull. Korean Chem. Soc. 2001; 22: 9
Reference Ris Wihthout Link
- 7a
Ostrowski S,
Mikus A,
Shim YK,
Lee J.-C,
Seo E.-Y,
Lee K.-I,
Olejnik M.
Heterocycles 2002; 57: 1615
Reference Ris Wihthout Link
- 7b
Mąkosza M,
Paszewski M.
Polish J. Chem. 2005; 79: 163
Reference Ris Wihthout Link
- 7c
Ostrowski S.
A.Y.: Basic Sci. & Eng. 2003; 12: 523 ; Chem. Abstr. 2005, 142, 347339p
Reference Ris Wihthout Link
- 7d
Ostrowski S,
Mikus A.
Mol. Divers. 2003; 6: 315
Reference Ris Wihthout Link
- 7e
Ostrowski S,
Mikus A.
Ann. Polish Chem. Soc. 2003; 2: 62
Reference Ris Wihthout Link
- 7f
Ostrowski S,
Mikus A.
Molecules-Molbank 2003; M329
Reference Ris Wihthout Link
- 7g
Ostrowski S,
Mikus A.
Heterocycles 2005; 65: 2339
Reference Ris Wihthout Link
- 7h
Wyrębek P,
Mikus A,
Ostrowski S.
Jordan J. Chem. 2006; 1: 39
Reference Ris Wihthout Link
- 7i
Ostrowski S,
Urbańska N,
Mikus A.
Tetrahedron Lett. 2003; 44: 4373
Reference Ris Wihthout Link
- 7j
Ostrowski S,
Mikus A,
Łopuszyńska B.
Tetrahedron 2004; 60: 11951
Reference Ris Wihthout Link
- 7k
Ostrowski S,
Mikus A,
Borkowska A.
Proceedings of ’The Seventh International Electronic Conference on Synthetic Organic
Chemistry’.
Seijas JA,
Ji D.-C,
Lin S.-K.
Basel,; 2003. [A-002], ISBN 3-906980-13-8 (CD-ROM edition)
Reference Ris Wihthout Link
- 7l
Ostrowski S,
Mikus A.
Proceedings of ’The Seventh International Electronic Conference on Synthetic Organic
Chemistry’.
Seijas JA,
Ji D.-C,
Lin S.-K.
Basel,; 2003. [A-003], ISBN 3-906980-13-8 (CD-ROM edition)
Reference Ris Wihthout Link
- 8a
Ostrowski S,
Grzyb S,
Mikus A.
Helv. Chim. Acta 2007; 90: 2000
Reference Ris Wihthout Link
- 8b
Ostrowski S,
Grzyb S.
Jordan J. Chem. 2007; 2: 297
Reference Ris Wihthout Link
- 8c
Grzyb S,
Ostrowski S.
Jordan J. Chem. 2012; 7: 231
Reference Ris Wihthout Link
- 8d
Katritzky AR,
Laurenzo KS.
J. Org. Chem. 1988; 53: 3978
Reference Ris Wihthout Link
- 8e
Ostrowski S,
Kosmalska M,
Mikus A.
Tetrahedron Lett. 2017; 58: 2011
Reference Ris Wihthout Link
- 8f
Mąkosza M,
Owczarczyk Z.
Tetrahedron Lett. 1987; 28: 3021
Reference Ris Wihthout Link
- 8g
Mąkosza M,
Owczarczyk Z.
J. Org. Chem. 1989; 54: 5094
Reference Ris Wihthout Link
- 9a
Ostrysz S,
Mikus A,
Ostrowski S.
Int. J. Sci. 2014; 3: 99
Reference Ris Wihthout Link
- 9b
Ostrowski S,
Raczko AM.
Helv. Chim. Acta 2005; 88: 974
Reference Ris Wihthout Link
- 9c
Mikus A,
Ostrowski S.
J. Porphyrins Phthalocyanines 2024; 28: 647
Reference Ris Wihthout Link
- 9d
Eddahmi M,
Moura NM. M,
Ramos CI. V,
Bouissane L,
Faustino MA. F,
Cavaleiro JA. S,
Rakib EM,
Neves MG. P. M. S.
Arabian J. Chem. 2020; 13: 5849
Reference Ris Wihthout Link
- 10a
Mikus A,
Rosa M,
Ostrowski S.
Molecules 2019; 24: 838
Reference Ris Wihthout Link
- 10b
Mikus A,
Ostrowski S.
Struct. Chem. 2022; 33: 1251
Reference Ris Wihthout Link
- 10c
Mikus A,
Ostrowski S.
Struct. Chem. 2022; 33: 2261
Reference Ris Wihthout Link
- 10d
Mikus A.
Mendeleev Commun. 2024; 34: 70
Reference Ris Wihthout Link
- 10e
Rosa M,
Ostrowski S.
ChemistrySelect 2022; 7: e202200290
Reference Ris Wihthout Link
- 10f
Mikus A,
Ostrysz S,
Ostrowski S.
Eur. J. Org. Chem. 2025; DOI:
Reference Ris Wihthout Link
- 11a
Ostrowski S,
Grzyb S.
Tetrahedron Lett. 2012; 53: 6355
Reference Ris Wihthout Link
- 11b
Richeter S,
Hadj-Aïssa A,
Taffin C,
van der Lee A,
Leclercq D.
Chem. Commun. 2007; 2148
Reference Ris Wihthout Link
- 11c
Lefebvre J.-F,
Leclercq D,
Gisselbrecht J.-P,
Richeter S.
Eur. J. Org. Chem. 2010; 1912
Reference Ris Wihthout Link
- 11d
Ostrowski S,
Grzyb S,
Godlewski B.
Curr. Org. Chem. 2024; 28: 1542
Reference Ris Wihthout Link
- 11e
Ostrysz S,
Mikus A,
Ostrowski S.
Org. Commun. 2025; 18: 100
Reference Ris Wihthout Link































