Facial Plast Surg 2020; 36(06): 711-714
DOI: 10.1055/s-0040-1721109
Original Article

Customized Orbit and Frontal Bone Implants

1   Otolaryngology and Facial Plastic Surgery Associates, Fort Worth, Texas
,
Arya Namin
2   Department of Otolaryngology Head and Neck Surgery, University of Missouri, Columbia, Missouri
,
Tom Shokri
1   Otolaryngology and Facial Plastic Surgery Associates, Fort Worth, Texas
,
Yadranko Ducic
1   Otolaryngology and Facial Plastic Surgery Associates, Fort Worth, Texas
› Author Affiliations

Abstract

Orbitocranial reconstruction objectives include creation of a solid barrier between intracranial contents and the environment allowing restoration of physiologic homeostasis and restoration of aesthetic craniofacial contours. Historically, bone grafts have been used for reconstruction but were fraught with unpredictable resorption and imperfect contouring given the complex anatomy of the orbitofrontal bones. With advances in three-dimensional modeling technology, alloplastic custom implants in orbital and frontal bone reconstruction have allowed for rapid fixation reducing surgical times and improved cosmesis.



Publication History

Article published online:
24 December 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Hoffmann J, Cornelius CP, Groten M, Pröbster L, Pfannenberg C, Schwenzer N. Orbital reconstruction with individually copy-milled ceramic implants. Plast Reconstr Surg 1998; 101 (03) 604-612
  • 2 Baumann A, Sinko K, Dorner G. Late reconstruction of the orbit with patient-specific implants using computer-aided planning and navigation. J Oral Maxillofac Surg 2015; 73 (12, Suppl): S101-S106
  • 3 Patel N, Kim B, Zaid W. Use of virtual surgical planning for simultaneous maxillofacial osteotomies and custom polyetheretherketone implant in secondary orbitofrontal reconstruction: importance of restoring orbital volume. J Craniofac Surg 2017; 28 (02) 387-390
  • 4 Mommaerts MY, Büttner M, Vercruysse Jr H, Wauters L, Beerens M. Orbital wall reconstruction with two-piece puzzle 3d printed implants: technical note. Craniomaxillofac Trauma Reconstr 2016; 9 (01) 55-61
  • 5 Soleman J, Thieringer F, Beinemann J, Kunz C, Guzman R. Computer-assisted virtual planning and surgical template fabrication for frontoorbital advancement. Neurosurg Focus 2015; 38 (05) E5
  • 6 Goodson ML, Farr D, Keith D, Banks RJ. Use of two-piece polyetheretherketone (PEEK) implants in orbitozygomatic reconstruction. Br J Oral Maxillofac Surg 2012; 50 (03) 268-269
  • 7 Williams JV, Revington PJ. Novel use of an aerospace selective laser sintering machine for rapid prototyping of an orbital blowout fracture. Int J Oral Maxillofac Surg 2010; 39 (02) 182-184
  • 8 Gerbino G, Zavattero E, Zenga F, Bianchi FA, Garzino-Demo P, Berrone S. Primary and secondary reconstruction of complex craniofacial defects using polyetheretherketone custom-made implants. J Craniomaxillofac Surg 2015; 43 (08) 1356-1363
  • 9 Gander T, Essig H, Metzler P. et al. Patient specific implants (PSI) in reconstruction of orbital floor and wall fractures. J Craniomaxillofac Surg 2015; 43 (01) 126-130
  • 10 Zhang Y, He Y, Zhang ZY, An JG. Evaluation of the application of computer-aided shape-adapted fabricated titanium mesh for mirroring-reconstructing orbital walls in cases of late post-traumatic enophthalmos. J Oral Maxillofac Surg 2010; 68 (09) 2070-2075
  • 11 Zimmerer RM, Ellis III E, Aniceto GS. et al. A prospective multicenter study to compare the precision of posttraumatic internal orbital reconstruction with standard preformed and individualized orbital implants. J Craniomaxillofac Surg 2016; 44 (09) 1485-1497
  • 12 Chepurnyi Y, Chernogorskyi D, Kopchak A, Petrenko O. Clinical efficacy of peek patient-specific implants in orbital reconstruction. J Oral Biol Craniofac Res 2020; 10 (02) 49-53
  • 13 Metzger MC, Schön R, Weyer N. et al. Anatomical 3-dimensional pre-bent titanium implant for orbital floor fractures. Ophthalmology 2006; 113 (10) 1863-1868
  • 14 Scolozzi P, Momjian A, Heuberger J. et al. Accuracy and predictability in use of AO three-dimensionally preformed titanium mesh plates for posttraumatic orbital reconstruction: a pilot study. J Craniofac Surg 2009; 20 (04) 1108-1113
  • 15 Lee KM, Park JU, Kwon ST, Kim SW, Jeong EC. Three-dimensional pre-bent titanium implant for concomitant orbital floor and medial wall fractures in an East Asian population. Arch Plast Surg 2014; 41 (05) 480-485
  • 16 Gordon CR, Susarla SM, Yaremchuk MJ. Quantitative assessment of medial orbit fracture repair using computer-designed anatomical plates. Plast Reconstr Surg 2012; 130 (05) 698e-705e
  • 17 Huempfner-Hierl H, Doerfler HM, Kruber D, Hierl T. Morphologic comparison of preformed orbital meshes. J Oral Maxillofac Surg 2015; 73 (06) 1119-1123
  • 18 Metzger MC, Schön R, Schulze D, Carvalho C, Gutwald R, Schmelzeisen R. Individual preformed titanium meshes for orbital fractures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006; 102 (04) 442-447
  • 19 Mustafa SF, Evans PL, Bocca A, Patton DW, Sugar AW, Baxter PW. Customized titanium reconstruction of post-traumatic orbital wall defects: a review of 22 cases. Int J Oral Maxillofac Surg 2011; 40 (12) 1357-1362
  • 20 Mahoney NR, Peng MY, Merbs SL, Grant MP. Virtual fitting, selection, and cutting of preformed anatomic orbital implants. Ophthal Plast Reconstr Surg 2017; 33 (03) 196-201
  • 21 Sürme MB, Hergunsel OB, Akgun B, Kaplan M. Cranioplasty with preoperatively customized polymethyl-methacrylate by using 3-dimensional printed polyethylene terephthalate glycol mold. J Neurosci Neurol Disord 2018; 2: 52-64
  • 22 De La Peña A, De La Peña-Brambila J, Pérez-De La Torre J, Ochoa M, Gallardo GJ. Low-cost customized cranioplasty using a 3D digital printing model: a case report. 3D Print Med 2018; 4 (01) 4
  • 23 Alkhaibary A, Alharbi A, Alnefaie N, Oqalaa Almubarak A, Aloraidi A, Khairy S. Cranioplasty: a comprehensive review of the history, materials, surgical aspects, and complications. World Neurosurg 2020; 139: 445-452
  • 24 Yoshioka N, Tominaga S. Titanium mesh implant exposure due to pressure gradient fluctuation. World Neurosurg 2018; 119: e734-e739
  • 25 Sun Y, Hu Y, Yuan Q. et al. Association between metal hypersensitivity and implant failure in patients who underwent titanium cranioplasty. J Neurosurg 2018; 131 (01) 40-46
  • 26 Wang W, Vincent A, Bahrami A, Shokri T, Inman J, Ducic Y. Progressive scalp thinning over mesh cranioplasty and the role of lipotransfer. Laryngoscope 2020; 130 (08) 1926-1931
  • 27 Strong EB, Fuller SC, Wiley DF, Zumbansen J, Wilson MD, Metzger MC. Preformed vs intraoperative bending of titanium mesh for orbital reconstruction. Otolaryngol Head Neck Surg 2013; 149 (01) 60-66
  • 28 Tan ET, Ling JM, Dinesh SK. The feasibility of producing patient-specific acrylic cranioplasty implants with a low-cost 3D printer. J Neurosurg 2016; 124 (05) 1531-1537
  • 29 Callahan AB, Campbell AA, Petris C, Kazim M. Low-cost 3D printing orbital implant templates in secondary orbital reconstructions. Ophthal Plast Reconstr Surg 2017; 33 (05) 376-380
  • 30 Bittermann G, Metzger MC, Schlager S. et al. Orbital reconstruction: prefabricated implants, data transfer, and revision surgery. Facial Plast Surg 2014; 30 (05) 554-560