Semin Thromb Hemost 2021; 47(03): 240-253
DOI: 10.1055/s-0041-1725066
Review Article

Biology of the Heparanase–Heparan Sulfate Axis and Its Role in Disease Pathogenesis

Israel Vlodavsky
1   Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
,
Uri Barash
1   Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
,
Hien M. Nguyen
2   Department of Chemistry, Wayne State University, Detroit, Michigan
,
Shi-Ming Yang
3   Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
,
Neta Ilan
1   Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
› Author Affiliations
Funding This study was generously supported by research grants awarded to R.S. and I.V. by the National Institutes of Health (CA211752) and the United States-Israel Binational Science Foundation (BSF). It was also supported by grants from the Israel Science Foundation (grant 601/14; 1021/19), the ISF-NSFC joint research program (grant no. 2572/16 awarded to I.V. and S-M.Y.), the National Institutes of Health (R01GM098285 awarded to H.M.N.), and the Israel Cancer Research Fund (ICRF, awarded to I.V.). I.V. is a research professor of the ICRF. We gratefully acknowledge the continuous support and advice provided by Dr. Ralph D. Sanderson (UAB Comprehensive Cancer Center).

Abstract

Cell surface proteoglycans are important constituents of the glycocalyx and participate in cell–cell and cell–extracellular matrix (ECM) interactions, enzyme activation and inhibition, and multiple signaling routes, thereby regulating cell proliferation, survival, adhesion, migration, and differentiation. Heparanase, the sole mammalian heparan sulfate degrading endoglycosidase, acts as an “activator” of HS proteoglycans, thus regulating tissue hemostasis. Heparanase is a multifaceted enzyme that together with heparan sulfate, primarily syndecan-1, drives signal transduction, immune cell activation, exosome formation, autophagy, and gene transcription via enzymatic and nonenzymatic activities. An important feature is the ability of heparanase to stimulate syndecan-1 shedding, thereby impacting cell behavior both locally and distally from its cell of origin. Heparanase releases a myriad of HS-bound growth factors, cytokines, and chemokines that are sequestered by heparan sulfate in the glycocalyx and ECM. Collectively, the heparan sulfate–heparanase axis plays pivotal roles in creating a permissive environment for cell proliferation, differentiation, and function, often resulting in the pathogenesis of diseases such as cancer, inflammation, endotheliitis, kidney dysfunction, tissue fibrosis, and viral infection.

Authors' Contributions

I.V. and N.I. designed and wrote the review. U.B., H.M.N., and S-M.Y. contributed some sections and revised the review.




Publication History

Article published online:
01 April 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Karamanos NK, Piperigkou Z, Theocharis AD. et al. Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. Chem Rev 2018; 118 (18) 9152-9232
  • 2 Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42: 11-55
  • 3 Zoeller JJ, Whitelock JM, Iozzo RV. Perlecan regulates developmental angiogenesis by modulating the VEGF-VEGFR2 axis. Matrix Biol 2009; 28 (05) 284-291
  • 4 Gubbiotti MA, Neill T, Iozzo RV. A current view of perlecan in physiology and pathology: a mosaic of functions. Matrix Biol 2017; 57-58: 285-298
  • 5 Iozzo RV, San Antonio JD. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 2001; 108 (03) 349-355
  • 6 Couchman JR. Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol 2010; 26: 89-114
  • 7 Bernfield M, Götte M, Park PW. et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 1999; 68: 729-777
  • 8 Rapraeger AC, Krufka A, Olwin BB. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 1991; 252 (5013): 1705-1708
  • 9 Capila I, Linhardt RJ. Heparin-protein interactions. Angew Chem Int Ed Engl 2002; 41 (03) 391-412
  • 10 Cardin AD, Weintraub HJ. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 1989; 9 (01) 21-32
  • 11 Zhang L. Glycosaminoglycan (GAG) biosynthesis and GAG-binding proteins. Prog Mol Biol Transl Sci 2010; 93: 1-17
  • 12 Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 2005; 5 (07) 526-542
  • 13 Afratis NA, Nikitovic D, Multhaupt HA, Theocharis AD, Couchman JR, Karamanos NK. Syndecans - key regulators of cell signaling and biological functions. FEBS J 2017; 284 (01) 27-41
  • 14 Götte M. Syndecans in inflammation. FASEB J 2003; 17 (06) 575-591
  • 15 Gallagher J. Fell-Muir Lecture: heparan sulphate and the art of cell regulation: a polymer chain conducts the protein orchestra. Int J Exp Pathol 2015; 96 (04) 203-231
  • 16 Monneau YR, Luo L, Sankaranarayanan NV. et al. Solution structure of CXCL13 and heparan sulfate binding show that GAG binding site and cellular signalling rely on distinct domains. Open Biol 2017; 7 (10) 170133
  • 17 Beauvais DM, Rapraeger AC. Syndecans in tumor cell adhesion and signaling. Reprod Biol Endocrinol 2004; 2: 3
  • 18 Multhaupt HA, Yoneda A, Whiteford JR, Oh ES, Lee W, Couchman JR. Syndecan signaling: When, where and why?. J Physiol Pharmacol 2009; 60 (Suppl. 04) 31-38
  • 19 Tkachenko E, Rhodes JM, Simons M. Syndecans: new kids on the signaling block. Circ Res 2005; 96 (05) 488-500
  • 20 Zimmermann P, David G. The syndecans, tuners of transmembrane signaling. FASEB J 1999; 13 (Suppl): S91-S100
  • 21 Langford JK, Yang Y, Kieber-Emmons T, Sanderson RD. Identification of an invasion regulatory domain within the core protein of syndecan-1. J Biol Chem 2005; 280 (05) 3467-3473
  • 22 Rapraeger AC. Synstatin: a selective inhibitor of the syndecan-1-coupled IGF1R-αvβ3 integrin complex in tumorigenesis and angiogenesis. FEBS J 2013; 280 (10) 2207-2215
  • 23 Goligorsky MS. The cell “coat of many colors”. Am J Pathol 2020; 190 (04) 728-731
  • 24 Ushiyama A, Kataoka H, Iijima T. Glycocalyx and its involvement in clinical pathophysiologies. J Intensive Care 2016; 4 (01) 59
  • 25 Sulka B, Lortat-Jacob H, Terreux R, Letourneur F, Rousselle P. Tyrosine dephosphorylation of the syndecan-1 PDZ binding domain regulates syntenin-1 recruitment. J Biol Chem 2009; 284 (16) 10659-10671
  • 26 Grootjans JJ, Zimmermann P, Reekmans G. et al. Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proc Natl Acad Sci U S A 1997; 94 (25) 13683-13688
  • 27 Baeyens N, Mulligan-Kehoe MJ, Corti F. et al. Syndecan 4 is required for endothelial alignment in flow and atheroprotective signaling. Proc Natl Acad Sci U S A 2014; 111 (48) 17308-17313
  • 28 Dovas A, Yoneda A, Couchman JR. PKCbeta-dependent activation of RhoA by syndecan-4 during focal adhesion formation. J Cell Sci 2006; 119 (Pt 13): 2837-2846
  • 29 Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 2003; 93 (10) e136-e142
  • 30 Pahakis MY, Kosky JR, Dull RO, Tarbell JM. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun 2007; 355 (01) 228-233
  • 31 Simons M, Horowitz A. Syndecan-4-mediated signalling. Cell Signal 2001; 13 (12) 855-862
  • 32 Steinfeld R, Van Den Berghe H, David G. Stimulation of fibroblast growth factor receptor-1 occupancy and signaling by cell surface-associated syndecans and glypican. J Cell Biol 1996; 133 (02) 405-416
  • 33 Thi MM, Tarbell JM, Weinbaum S, Spray DC. The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc Natl Acad Sci U S A 2004; 101 (47) 16483-16488
  • 34 Wilcox-Adelman SA, Denhez F, Goetinck PF. Syndecan-4 modulates focal adhesion kinase phosphorylation. J Biol Chem 2002; 277 (36) 32970-32977
  • 35 Gaskin SM, Soares Da Costa TP, Hulett MD. Heparanase: cloning, function and regulation. Adv Exp Med Biol 2020; 1221: 189-229
  • 36 Ilan N, Bhattacharya U, Barash U. et al. Heparanase - the message comes in different flavors. Adv Exp Med Biol 2020; 1221: 253-283
  • 37 Khanna M, Parish CR. Heparanase: historical aspects and future perspectives. Adv Exp Med Biol 2020; 1221: 71-96
  • 38 Vlodavsky I, Ilan N, Sanderson RD. Forty years of basic and translational heparanase research. Adv Exp Med Biol 2020; 1221: 3-59
  • 39 Abboud-Jarrous G, Atzmon R, Peretz T. et al. Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 2008; 283 (26) 18167-18176
  • 40 Fux L, Feibish N, Cohen-Kaplan V. et al. Structure-function approach identifies a COOH-terminal domain that mediates heparanase signaling. Cancer Res 2009; 69 (05) 1758-1767
  • 41 Simizu S, Suzuki T, Muroi M. et al. Involvement of disulfide bond formation in the activation of heparanase. Cancer Res 2007; 67 (16) 7841-7849
  • 42 Levy-Adam F, Abboud-Jarrous G, Guerrini M, Beccati D, Vlodavsky I, Ilan N. Identification and characterization of heparin/heparan sulfate binding domains of the endoglycosidase heparanase. J Biol Chem 2005; 280 (21) 20457-20466
  • 43 Wu L, Viola CM, Brzozowski AM, Davies GJ. Structural characterization of human heparanase reveals insights into substrate recognition. Nat Struct Mol Biol 2015; 22 (12) 1016-1022
  • 44 Wu L, Davies GJ. An overview of the structure, mechanism and specificity of human heparanase. Adv Exp Med Biol 2020; 1221: 139-167
  • 45 Koganti R, Suryawanshi R, Shukla D. Heparanase, cell signaling, and viral infections. Cell Mol Life Sci 2020; 77 (24) 5059-5077
  • 46 Parish CR, Freeman C, Ziolkowski AF. et al. Unexpected new roles for heparanase in Type 1 diabetes and immune gene regulation. Matrix Biol 2013; 32 (05) 228-233
  • 47 Schmidt EP, Yang Y, Janssen WJ. et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 2012; 18 (08) 1217-1223
  • 48 Massena S, Christoffersson G, Hjertström E. et al. A chemotactic gradient sequestered on endothelial heparan sulfate induces directional intraluminal crawling of neutrophils. Blood 2010; 116 (11) 1924-1931
  • 49 Ben-Zaken O, Shafat I, Gingis-Velitski S. et al. Low and high affinity receptors mediate cellular uptake of heparanase. Int J Biochem Cell Biol 2008; 40 (03) 530-542
  • 50 Gingis-Velitski S, Zetser A, Flugelman MY, Vlodavsky I, Ilan N. Heparanase induces endothelial cell migration via protein kinase B/Akt activation. J Biol Chem 2004; 279 (22) 23536-23541
  • 51 Gingis-Velitski S, Zetser A, Kaplan V. et al. Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. J Biol Chem 2004; 279 (42) 44084-44092
  • 52 Nadav L, Eldor A, Yacoby-Zeevi O. et al. Activation, processing and trafficking of extracellular heparanase by primary human fibroblasts. J Cell Sci 2002; 115 (Pt 10): 2179-2187
  • 53 Vreys V, Delande N, Zhang Z. et al. Cellular uptake of mammalian heparanase precursor involves low density lipoprotein receptor-related proteins, mannose 6-phosphate receptors, and heparan sulfate proteoglycans. J Biol Chem 2005; 280 (39) 33141-33148
  • 54 Zetser A, Levy-Adam F, Kaplan V. et al. Processing and activation of latent heparanase occurs in lysosomes. J Cell Sci 2004; 117 (Pt 11): 2249-2258
  • 55 Ilan N, Elkin M, Vlodavsky I. Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 2006; 38 (12) 2018-2039
  • 56 Levy-Adam F, Feld S, Suss-Toby E, Vlodavsky I, Ilan N. Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans. PLoS One 2008; 3 (06) e2319
  • 57 Levy-Adam F, Feld S, Cohen-Kaplan V. et al. Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. J Biol Chem 2010; 285 (36) 28010-28019
  • 58 Chen K, Williams KJ. Molecular mediators for raft-dependent endocytosis of syndecan-1, a highly conserved, multifunctional receptor. J Biol Chem 2013; 288 (20) 13988-13999
  • 59 Ben-Zaken O, Gingis-Velitski S, Vlodavsky I, Ilan N. Heparanase induces Akt phosphorylation via a lipid raft receptor. Biochem Biophys Res Commun 2007; 361 (04) 829-834
  • 60 Ding Q, Wang Z, Chen Y. Endocytosis of adiponectin receptor 1 through a clathrin- and Rab5-dependent pathway. Cell Res 2009; 19 (03) 317-327
  • 61 Shteingauz A, Ilan N, Vlodavsky I. Processing of heparanase is mediated by syndecan-1 cytoplasmic domain and involves syntenin and α-actinin. Cell Mol Life Sci 2014; 71 (22) 4457-4470
  • 62 Beekman JM, Coffer PJ. The ins and outs of syntenin, a multifunctional intracellular adaptor protein. J Cell Sci 2008; 121 (Pt 9): 1349-1355
  • 63 Baietti MF, Zhang Z, Mortier E. et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 2012; 14 (07) 677-685
  • 64 Szatmári T, Ötvös R, Hjerpe A, Dobra K. Syndecan-1 in cancer: implications for cell signaling, differentiation, and prognostication. Dis Markers 2015; 2015: 796052
  • 65 Gharbaran R. Advances in the molecular functions of syndecan-1 (SDC1/CD138) in the pathogenesis of malignancies. Crit Rev Oncol Hematol 2015; 94 (01) 1-17
  • 66 Akl MR, Nagpal P, Ayoub NM. et al. Molecular and clinical profiles of syndecan-1 in solid and hematological cancer for prognosis and precision medicine. Oncotarget 2015; 6 (30) 28693-28715
  • 67 Vlodavsky I, Beckhove P, Lerner I. et al. Significance of heparanase in cancer and inflammation. Cancer Microenviron 2012; 5 (02) 115-132
  • 68 Vreys V, David G. Mammalian heparanase: What is the message?. J Cell Mol Med 2007; 11 (03) 427-452
  • 69 Nam EJ, Park PW. Shedding of cell membrane-bound proteoglycans. Methods Mol Biol 2012; 836: 291-305
  • 70 Yang Y, Macleod V, Miao HQ. et al. Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem 2007; 282 (18) 13326-13333
  • 71 Purushothaman A, Sanderson RD. Heparanase: a dynamic promoter of myeloma progression. Adv Exp Med Biol 2020; 1221: 331-349
  • 72 Purushothaman A, Chen L, Yang Y, Sanderson RD. Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 2008; 283 (47) 32628-32636
  • 73 Yang Y, MacLeod V, Dai Y. et al. The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood 2007; 110 (06) 2041-2048
  • 74 LaRivière WB, Liao S, McMurtry SA. et al. Alveolar heparan sulfate shedding impedes recovery from bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2020; 318 (06) L1198-L1210
  • 75 Dias-Teixeira K, Horton X, McKown R, Romano J, Laurie GW. The lacritin-syndecan-1-heparanase axis in dry eye disease. Adv Exp Med Biol 2020; 1221: 747-757
  • 76 Jung O, Trapp-Stamborski V, Purushothaman A. et al. Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins. Oncogenesis 2016; 5: e202
  • 77 Kelly T, Miao H-Q, Yang Y. et al. High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Res 2003; 63 (24) 8749-8756
  • 78 Purushothaman A, Uyama T, Kobayashi F. et al. Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 2010; 115 (12) 2449-2457
  • 79 Zetser A, Bashenko Y, Edovitsky E, Levy-Adam F, Vlodavsky I, Ilan N. Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Res 2006; 66 (03) 1455-1463
  • 80 Brockstedt U, Dobra K, Nurminen M, Hjerpe A. Immunoreactivity to cell surface syndecans in cytoplasm and nucleus: tubulin-dependent rearrangements. Exp Cell Res 2002; 274 (02) 235-245
  • 81 Zong F, Fthenou E, Wolmer N. et al. Syndecan-1 and FGF-2, but not FGF receptor-1, share a common transport route and co-localize with heparanase in the nuclei of mesenchymal tumor cells. PLoS One 2009; 4 (10) e7346
  • 82 Chen L, Sanderson RD. Heparanase regulates levels of syndecan-1 in the nucleus. PLoS One 2009; 4 (03) e4947
  • 83 Stewart MD, Sanderson RD. Heparan sulfate in the nucleus and its control of cellular functions. Matrix Biol 2014; 35: 56-59
  • 84 Kovalszky I, Hjerpe A, Dobra K. Nuclear translocation of heparan sulfate proteoglycans and their functional significance. Biochim Biophys Acta 2014; 1840 (08) 2491-2497
  • 85 Yang S, Liao Y, Zhao Q, Xie Y, Zheng A, Wan H. Heparanase is a critical regulator of mitotic spindles required for maintaining chromosome stability. DNA Cell Biol 2018; 37 (04) 291-297
  • 86 Zhang L, Sullivan P, Suyama J, Marchetti D. Epidermal growth factor-induced heparanase nucleolar localization augments DNA topoisomerase I activity in brain metastatic breast cancer. Mol Cancer Res 2010; 8 (02) 278-290
  • 87 Yang Y, Gorzelanny C, Bauer AT. et al. Nuclear heparanase-1 activity suppresses melanoma progression via its DNA-binding affinity. Oncogene 2015; 34 (47) 5832-5842
  • 88 Cohen-Kaplan V, Jrbashyan J, Yanir Y. et al. Heparanase induces signal transducer and activator of transcription (STAT) protein phosphorylation: preclinical and clinical significance in head and neck cancer. J Biol Chem 2012; 287 (09) 6668-6678
  • 89 Richardson TP, Trinkaus-Randall V, Nugent MA. Regulation of heparan sulfate proteoglycan nuclear localization by fibronectin. J Cell Sci 2001; 114 (Pt 9): 1613-1623
  • 90 Hsia E, Richardson TP, Nugent MA. Nuclear localization of basic fibroblast growth factor is mediated by heparan sulfate proteoglycans through protein kinase C signaling. J Cell Biochem 2003; 88 (06) 1214-1225
  • 91 Purushothaman A, Hurst DR, Pisano C, Mizumoto S, Sugahara K, Sanderson RD. Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem 2011; 286 (35) 30377-30383
  • 92 Asperti M, Stuemler T, Poli M. et al. Heparanase overexpression reduces hepcidin expression, affects iron homeostasis and alters the response to inflammation. PLoS One 2016; 11 (10) e0164183
  • 93 Ruivo CF, Adem B, Silva M, Melo SA. The biology of cancer exosomes: insights and new perspectives. Cancer Res 2017; 77 (23) 6480-6488
  • 94 Skotland T, Sandvig K, Llorente A. Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res 2017; 66: 30-41
  • 95 Fernando MR, Jiang C, Krzyzanowski GD, Ryan WL. New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes. PLoS One 2017; 12 (08) e0183915
  • 96 Takahashi A, Okada R, Nagao K. et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun 2017; 8: 15287
  • 97 Janas T, Janas MM, Sapoń K, Janas T. Mechanisms of RNA loading into exosomes. FEBS Lett 2015; 589 (13) 1391-1398
  • 98 Thompson CA, Purushothaman A, Ramani VC, Vlodavsky I, Sanderson RD. Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. J Biol Chem 2013; 288 (14) 10093-10099
  • 99 Roucourt B, Meeussen S, Bao J, Zimmermann P, David G. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res 2015; 25 (04) 412-428
  • 100 Sanderson RD, Bandari SK, Vlodavsky I. Proteases and glycosidases on the surface of exosomes: Newly discovered mechanisms for extracellular remodeling. Matrix Biol 2019; 75-76: 160-169
  • 101 Bandari SK, Purushothaman A, Ramani VC. et al. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol 2018; 65: 104-118
  • 102 Purushothaman A, Bandari SK, Liu J, Mobley JA, Brown EE, Sanderson RD. Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. J Biol Chem 2016; 291 (04) 1652-1663
  • 103 Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A 2013; 110 (43) 17380-17385
  • 104 Noseda A, Barbieri P. Roneparstat: development, preclinical and clinical studies. Adv Exp Med Biol 2020; 1221: 523-538
  • 105 Teng YH, Aquino RS, Park PW. Molecular functions of syndecan-1 in disease. Matrix Biol 2012; 31 (01) 3-16
  • 106 Bao X, Moseman EA, Saito H. et al. Endothelial heparan sulfate controls chemokine presentation in recruitment of lymphocytes and dendritic cells to lymph nodes. Immunity 2010; 33 (05) 817-829
  • 107 Li Q, Park PW, Wilson CL, Parks WC. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 2002; 111 (05) 635-646
  • 108 Hayashida K, Parks WC, Park PW. Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines. Blood 2009; 114 (14) 3033-3043
  • 109 Chappell D, Jacob M, Paul O. et al. The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ Res 2009; 104 (11) 1313-1317
  • 110 Torres Filho IP, Torres LN, Salgado C, Dubick MA. Plasma syndecan-1 and heparan sulfate correlate with microvascular glycocalyx degradation in hemorrhaged rats after different resuscitation fluids. Am J Physiol Heart Circ Physiol 2016; 310 (11) H1468-H1478
  • 111 Constantinescu AA, Vink H, Spaan JA. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 2003; 23 (09) 1541-1547
  • 112 Voyvodic PL, Min D, Liu R. et al. Loss of syndecan-1 induces a pro-inflammatory phenotype in endothelial cells with a dysregulated response to atheroprotective flow. J Biol Chem 2014; 289 (14) 9547-9559
  • 113 McDonald KK, Cooper S, Danielzak L, Leask RL. Glycocalyx degradation induces a proinflammatory phenotype and increased leukocyte adhesion in cultured endothelial cells under flow. PLoS One 2016; 11 (12) e0167576
  • 114 Goodall KJ, Poon IK, Phipps S, Hulett MD. Soluble heparan sulfate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4. PLoS One 2014; 9 (10) e109596
  • 115 Forsten-Williams K, Chu CL, Fannon M, Buczek-Thomas JA, Nugent MA. Control of growth factor networks by heparan sulfate proteoglycans. Ann Biomed Eng 2008; 36 (12) 2134-2148
  • 116 Hippensteel JA, Anderson BJ, Orfila JE. et al. Circulating heparan sulfate fragments mediate septic cognitive dysfunction. J Clin Invest 2019; 129 (04) 1779-1784
  • 117 Martin L, Peters C, Schmitz S. et al. Soluble heparan sulfate in serum of septic shock patients induces mitochondrial dysfunction in murine cardiomyocytes. Shock 2015; 44 (06) 569-577
  • 118 Nelson A, Berkestedt I, Bodelsson M. Circulating glycosaminoglycan species in septic shock. Acta Anaesthesiol Scand 2014; 58 (01) 36-43
  • 119 Nelson A, Berkestedt I, Schmidtchen A, Ljunggren L, Bodelsson M. Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock 2008; 30 (06) 623-627
  • 120 Martin L, De Santis R, Koczera P. et al. The synthetic antimicrobial peptide 19-2.5 interacts with heparanase and heparan sulfate in murine and human sepsis. PLoS One 2015; 10 (11) e0143583
  • 121 Lygizos MI, Yang Y, Altmann CJ. et al. Heparanase mediates renal dysfunction during early sepsis in mice. Physiol Rep 2013; 1 (06) e00153
  • 122 Mayfosh AJ, Baschuk N, Hulett MD. Leukocyte heparanase: a double-edged sword in tumor progression. Front Oncol 2019; 9: 331
  • 123 Akbarshahi H, Axelsson JB, Said K, Malmström A, Fischer H, Andersson R. TLR4 dependent heparan sulphate-induced pancreatic inflammatory response is IRF3-mediated. J Transl Med 2011; 9: 219
  • 124 Axelsson J, Xu D, Kang BN. et al. Inactivation of heparan sulfate 2-O-sulfotransferase accentuates neutrophil infiltration during acute inflammation in mice. Blood 2012; 120 (08) 1742-1751
  • 125 Bode JG, Ehlting C, Häussinger D. The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. Cell Signal 2012; 24 (06) 1185-1194
  • 126 Brunn GJ, Bungum MK, Johnson GB, Platt JL. Conditional signaling by Toll-like receptor 4. FASEB J 2005; 19 (07) 872-874
  • 127 Johnson GB, Brunn GJ, Kodaira Y, Platt JL. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 2002; 168 (10) 5233-5239
  • 128 Parish CR. The role of heparan sulphate in inflammation. Nat Rev Immunol 2006; 6 (09) 633-643
  • 129 Wang Z, Xu H, Jiang L, Zhou X, Lu C, Zhang X. Positive association of heparanase expression with tumor invasion and lymphatic metastasis in gastric carcinoma. Mod Pathol 2005; 18 (02) 205-211
  • 130 Goldberg R, Meirovitz A, Hirshoren N. et al. Versatile role of heparanase in inflammation. Matrix Biol 2013; 32 (05) 234-240
  • 131 Li JP, Vlodavsky I. Heparin, heparan sulfate and heparanase in inflammatory reactions. Thromb Haemost 2009; 102 (05) 823-828
  • 132 Zhang X, Wang B, Li JP. Implications of heparan sulfate and heparanase in neuroinflammation. Matrix Biol 2014; 35: 174-181
  • 133 Caruana I, Savoldo B, Hoyos V. et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med 2015; 21 (05) 524-529
  • 134 Gutter-Kapon L, Alishekevitz D, Shaked Y. et al. Heparanase is required for activation and function of macrophages. Proc Natl Acad Sci U S A 2016; 113 (48) E7808-E7817
  • 135 Putz EM, Mayfosh AJ, Kos K. et al. NK cell heparanase controls tumor invasion and immune surveillance. J Clin Invest 2017; 127 (07) 2777-2788
  • 136 Bhattacharya U, Gutter-Kapon L, Kan T. et al. Heparanase and chemotherapy synergize to drive macrophage activation and enhance tumor growth. Cancer Res 2020; 80 (01) 57-68
  • 137 Blich M, Golan A, Arvatz G. et al. Macrophage activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arterioscler Thromb Vasc Biol 2013; 33 (02) e56-e65
  • 138 Hermano E, Goldberg R, Rubinstein AM. et al. Heparanase accelerates obesity-associated breast cancer progression. Cancer Res 2019; 79 (20) 5342-5354
  • 139 Rabelink TJ, van den Berg BM, Garsen M, Wang G, Elkin M, van der Vlag J. Heparanase: roles in cell survival, extracellular matrix remodelling and the development of kidney disease. Nat Rev Nephrol 2017; 13 (04) 201-212
  • 140 Shang R, Lal N, Puri K, Hussein B, Rodrigues B. Involvement of heparanase in endothelial cell-cardiomyocyte crosstalk. Adv Exp Med Biol 2020; 1221: 721-745
  • 141 Poon IK, Goodall KJ, Phipps S. et al. Mice deficient in heparanase exhibit impaired dendritic cell migration and reduced airway inflammation. Eur J Immunol 2014; 44 (04) 1016-1030
  • 142 Teixeira FCOB, Götte M. Involvement of syndecan-1 and heparanase in cancer and inflammation. Adv Exp Med Biol 2020; 1221: 97-135
  • 143 Gopal S. Syndecans in inflammation at a glance. Front Immunol 2020; 11: 227
  • 144 Binder Gallimidi A, Nussbaum G, Hermano E. et al. Syndecan-1 deficiency promotes tumor growth in a murine model of colitis-induced colon carcinoma. PLoS One 2017; 12 (03) e0174343
  • 145 Lerner I, Hermano E, Zcharia E. et al. Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J Clin Invest 2011; 121 (05) 1709-1721
  • 146 Gil N, Goldberg R, Neuman T. et al. Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes 2012; 61 (01) 208-216
  • 147 van den Hoven MJ, Rops AL, Vlodavsky I, Levidiotis V, Berden JH, van der Vlag J. Heparanase in glomerular diseases. Kidney Int 2007; 72 (05) 543-548
  • 148 Shafat I, Ilan N, Zoabi S, Vlodavsky I, Nakhoul F. Heparanase levels are elevated in the urine and plasma of type 2 diabetes patients and associate with blood glucose levels. PLoS One 2011; 6 (02) e17312
  • 149 Lepedda AJ, De Muro P, Capobianco G, Formato M. Significance of urinary glycosaminoglycans/proteoglycans in the evaluation of type 1 and type 2 diabetes complications. J Diabetes Complications 2017; 31 (01) 149-155
  • 150 Boels MGS, Koudijs A, Avramut MC. et al. Systemic monocyte chemotactic protein-1 inhibition modifies renal macrophages and restores glomerular endothelial glycocalyx and barrier function in diabetic nephropathy. Am J Pathol 2017; 187 (11) 2430-2440
  • 151 Goldberg R, Rubinstein AM, Gil N. et al. Role of heparanase-driven inflammatory cascade in pathogenesis of diabetic nephropathy. Diabetes 2014; 63 (12) 4302-4313
  • 152 Abassi Z, Goligorsky MS. Heparanase in acute kidney injury. Adv Exp Med Biol 2020; 1221: 685-702
  • 153 Abassi Z, Hamoud S, Hassan A. et al. Involvement of heparanase in the pathogenesis of acute kidney injury: nephroprotective effect of PG545. Oncotarget 2017; 8 (21) 34191-34204
  • 154 Masola V, Bellin G, Vischini G. et al. Inhibition of heparanase protects against chronic kidney dysfunction following ischemia/reperfusion injury. Oncotarget 2018; 9 (90) 36185-36201
  • 155 Masola V, Zaza G, Bellin G. et al. Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury. FASEB J 2018; 32 (02) 742-756
  • 156 Aalkjaer C, Boedtkjer DB. Getting neointimal: the emergence of heparanase into the vascular matrix. Circ Res 2009; 104 (03) 277-279
  • 157 Osterholm C, Folkersen L, Lengquist M. et al. Increased expression of heparanase in symptomatic carotid atherosclerosis. Atherosclerosis 2013; 226 (01) 67-73
  • 158 Vlodavsky I, Blich M, Li JP, Sanderson RD, Ilan N. Involvement of heparanase in atherosclerosis and other vessel wall pathologies. Matrix Biol 2013; 32 (05) 241-251
  • 159 Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005; 352 (16) 1685-1695
  • 160 Schaefer L, Iozzo RV. Small leucine-rich proteoglycans, at the crossroad of cancer growth and inflammation. Curr Opin Genet Dev 2012; 22 (01) 56-57
  • 161 Agelidis A, Shukla D. Heparanase, heparan sulfate and viral infection. Adv Exp Med Biol 2020; 1221: 759-770
  • 162 Clausen TM, Sandoval DR, Spliid CB. et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell 2020; 183 (04) 1043-1057
  • 163 Courtney M-W, Dunhao S, Stefano E. et al. The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 receptor binding domain undergoes conformational change upon heparin binding. bioRxiv (epub ahead of print) DOI: 10.1101/2020.02.29.971093.
  • 164 Hadigal SR, Agelidis AM, Karasneh GA. et al. Heparanase is a host enzyme required for herpes simplex virus-1 release from cells. Nat Commun 2015; 6: 6985
  • 165 Bacsa S, Karasneh G, Dosa S, Liu J, Valyi-Nagy T, Shukla D. Syndecan-1 and syndecan-2 play key roles in herpes simplex virus type-1 infection. J Gen Virol 2011; 92 (Pt 4): 733-743
  • 166 Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 2002; 71: 435-471
  • 167 Guo Y, Wang Z, Dong L, Wu J, Zhai S, Liu D. Ability of low-molecular-weight heparin to alleviate proteinuria by inhibiting respiratory syncytial virus infection. Nephrology (Carlton) 2008; 13 (07) 545-553
  • 168 Vlodavsky I, Ilan N, Naggi A, Casu B. Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr Pharm Des 2007; 13 (20) 2057-2073
  • 169 Agelidis AM, Hadigal SR, Jaishankar D, Shukla D. Viral activation of heparanase drives pathogenesis of herpes simplex virus-1. Cell Reports 2017; 20 (02) 439-450
  • 170 Lindahl U, Li JP. Heparin - an old drug with multiple potential targets in COVID-19 therapy. J Thromb Haemost 2020; 18 (09) 2422-2424
  • 171 Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Invest 2020; 130 (05) 2202-2205
  • 172 Shi C, Wang C, Wang H. et al. The potential of low molecular weight heparin to mitigate cytokine storm in severe COVID-19 patients: a retrospective clinical study. Clin Transl Sci 2020; 13 (06) 1087-1095
  • 173 Buijsers B, Yanginlar C, Grondman I. et al. Increased plasma heparanase activity in COVID-19 patients. Front Immunol 2020; 11: 575047
  • 174 Scott E, Guimond SE, Mycroft-West CJ. et al. Pixatimod (PG545), a clinical-stage heparan sulfate mimetic, is a potent inhibitor of the SARSCoV-2 virus. bioRxiv (epub ahead of print) DOI: 10.1101/2020.06.24.169334.
  • 175 Tiwari V, Beer JC, Sankaranarayanan NV, Swanson-Mungerson M, Desai UR. Discovering small-molecule therapeutics against SARS-CoV-2. Drug Discov Today 2020; 25 (08) 1535-1544
  • 176 Sanderson RD, Elkin M, Rapraeger AC, Ilan N, Vlodavsky I. Heparanase regulation of cancer, autophagy and inflammation: new mechanisms and targets for therapy. FEBS J 2017; 284 (01) 42-55