Semin Musculoskelet Radiol 2021; 25(03): 441-454
DOI: 10.1055/s-0041-1730401
Review Article

3D Whole-Body MRI of the Musculoskeletal System

Vassiliki Pasoglou
1   Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
,
Sandy Van Nieuwenhove
1   Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
,
Frank Peeters
1   Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
,
Gaetan Duchêne
2   MR applications, General Electric Healthcare, Diegem, Belgium
,
Thomas Kirchgesner
1   Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
,
Frederic E. Lecouvet
1   Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
› Author Affiliations

Abstract

With its outstanding soft tissue contrast, spatial resolution, and multiplanar capacities, magnetic resonance imaging (MRI) has become a widely used technique. Whole-body MRI (WB-MRI) has been introduced among diagnostic methods for the staging and follow-up assessment in oncologic patients, and international guidelines recommend its use. In nononcologic applications, WB-MRI is as a promising imaging tool in inflammatory diseases, such as seronegative arthritis and inflammatory myopathies. Technological advances have facilitated the introduction of three-dimensional (3D) almost isotropic sequences in MRI examinations covering the whole body. The possibility to reformat 3D images in any plane with equal or almost equal resolution offers comprehensive understanding of the anatomy, easier disease detection and characterization, and finally contributes to correct treatment planning. This article illustrates the basic principles, advantages, and limitations of the 3D approach in WB-MRI examinations and provides a short review of the literature.



Publication History

Article published online:
21 September 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Hillengass J, Usmani S, Rajkumar SV. et al. International Myeloma Working Group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol 2019; 20 (06) e302-e312
  • 2 Gillessen S, Omlin A, Attard G. et al. Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol 2019; 30 (12) e3
  • 3 Barakat E, Kirchgesner T, Triqueneaux P, Galant C, Stoenoiu M, Lecouvet FE. Whole-body magnetic resonance imaging in rheumatic and systemic diseases: from emerging to validated indications. Magn Reson Imaging Clin N Am 2018; 26 (04) 581-597
  • 4 Lecouvet FE. Whole-body MR imaging: musculoskeletal applications. Radiology 2016; 279 (02) 345-365
  • 5 Tunariu N, Blackledge M, Messiou C. et al. What's new for clinical whole-body MRI (WB-MRI) in the 21st century. Br J Radiol 2020; 93 (1115): 20200562
  • 6 Morone M, Bali MA, Tunariu N. et al. Whole-body MRI: current applications in oncology. AJR Am J Roentgenol 2017; 209 (06) W336-W349
  • 7 Graudal N. The natural history and prognosis of rheumatoid arthritis: association of radiographic outcome with process variables, joint motion and immune proteins. Scand J Rheumatol Suppl 2004; 118: 1-38
  • 8 Rofsky NM, Lee VS, Laub G. et al. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 1999; 212 (03) 876-884
  • 9 Özgen A. The value of the T2-weighted multipoint Dixon sequence in MRI of sacroiliac joints for the diagnosis of active and chronic sacroiliitis. AJR Am J Roentgenol 2017; 208 (03) 603-608
  • 10 Duc SR, Pfirrmann CW, Koch PP, Zanetti M, Hodler J. Internal knee derangement assessed with 3-minute three-dimensional isovoxel true FISP MR sequence: preliminary study. Radiology 2008; 246 (02) 526-535
  • 11 Shakoor D, Guermazi A, Kijowski R. et al. Diagnostic performance of three-dimensional MRI for depicting cartilage defects in the knee: a meta-analysis. Radiology 2018; 289 (01) 71-82
  • 12 Fritz J, Raithel E, Thawait GK, Gilson W, Papp DF. Six-fold acceleration of high-spatial resolution 3D SPACE MRI of the knee through incoherent k-space undersampling and iterative reconstruction—first experience. Invest Radiol 2016; 51 (06) 400-409
  • 13 Fritz J, Fritz B, Thawait GG, Meyer H, Gilson WD, Raithel E. Three-dimensional CAIPIRINHA SPACE TSE for 5-minute high-resolution MRI of the knee. Invest Radiol 2016; 51 (10) 609-617
  • 14 Del Grande F, Delcogliano M, Guglielmi R. et al. Fully automated 10-minute 3D CAIPIRINHA SPACE TSE MRI of the knee in adults: a multicenter, multireader, multifield-strength validation study. Invest Radiol 2018; 53 (11) 689-697
  • 15 Yamabe E, Anavim A, Sakai T. et al. Comparison between high-resolution isotropic three-dimensional and high-resolution conventional two-dimensional FSE MR images of the wrist at 3 Tesla: a pilot study. J Magn Reson Imaging 2014; 40 (03) 603-608
  • 16 Fritz J, Ahlawat S, Fritz B. et al. 10-min 3D turbo spin echo MRI of the knee in children: arthroscopy-validated accuracy for the diagnosis of internal derangement. J Magn Reson Imaging 2019; 49 (07) e139-e151
  • 17 Hurst GC, Hua J, Simonetti OP, Duerk JL. Signal-to-noise, resolution, and bias function analysis of asymmetric sampling with zero-padded magnitude FT reconstruction. Magn Reson Med 1992; 27 (02) 247-269
  • 18 Bakshi R, Kamran S, Kinkel PR. et al. Fluid-attenuated inversion-recovery MR imaging in acute and subacute cerebral intraventricular hemorrhage. AJNR Am J Neuroradiol 1999; 20 (04) 629-636
  • 19 Naganawa S, Koshikawa T, Nakamura T. et al. Comparison of flow artifacts between 2D-FLAIR and 3D-FLAIR sequences at 3 T. Eur Radiol 2004; 14 (10) 1901-1908
  • 20 Johnson G, Hutchinson JMS, Redpath TW, Eastwood LM. Improvements in performance time for simultaneous three-dimensional NMR imaging. J Magn Reson 1983; 54 (03) 374-384
  • 21 Fritz J, Guggenberger R, Del Grande F. Rapid musculoskeletal MRI in 2021: clinical application of advanced accelerated techniques. AJR Am J Roentgenol 2021; 216 (03) 718-733
  • 22 Del Grande F, Guggenberger R, Fritz J. Rapid musculoskeletal MRI in 2021: value and optimized use of widely accessible techniques. AJR Am J Roentgenol 2021; 216 (03) 704-717
  • 23 Bley TA, Wieben O, François CJ, Brittain JH, Reeder SB. Fat and water magnetic resonance imaging. J Magn Reson Imaging 2010; 31 (01) 4-18
  • 24 Dixon WT. Simple proton spectroscopic imaging. Radiology 1984; 153 (01) 189-194
  • 25 Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging 2008; 28 (03) 543-558
  • 26 Kirchgesner T, Acid S, Perlepe V, Lecouvet F, Vande Berg B. Two-point Dixon fat-water swapping artifact: lesion mimicker at musculoskeletal T2-weighted MRI. Skeletal Radiol 2020; 49 (12) 2081-2086
  • 27 Soyer P, de Givry SC, Gueye C, Lenormand S, Somveille E, Scherrer A. Detection of focal hepatic lesions with MR imaging: prospective comparison of T2-weighted fast spin-echo with and without fat suppression, T2-weighted breath-hold fast spin-echo, and gadolinium chelate-enhanced 3D gradient-recalled imaging. AJR Am J Roentgenol 1996; 166 (05) 1115-1121
  • 28 Mugler III JP, Brookeman JR. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 1990; 15 (01) 152-157
  • 29 Jager GJ, Barentsz JO, Oosterhof GO, Witjes JA, Ruijs SJ. Pelvic adenopathy in prostatic and urinary bladder carcinoma: MR imaging with a three-dimensional TI-weighted magnetization-prepared-rapid gradient-echo sequence. AJR Am J Roentgenol 1996; 167 (06) 1503-1507
  • 30 Lee VS, Lavelle MT, Rofsky NM. et al. Hepatic MR imaging with a dynamic contrast-enhanced isotropic volumetric interpolated breath-hold examination: feasibility, reproducibility, and technical quality. Radiology 2000; 215 (02) 365-372
  • 31 Lichy MP, Wietek BM, Mugler III JP. et al. Magnetic resonance imaging of the body trunk using a single-slab, 3-dimensional, T2-weighted turbo-spin-echo sequence with high sampling efficiency (SPACE) for high spatial resolution imaging: initial clinical experiences. Invest Radiol 2005; 40 (12) 754-760
  • 32 Proscia N, Jaffe TA, Neville AM, Wang CL, Dale BM, Merkle EM. MRI of the pelvis in women: 3D versus 2D T2-weighted technique. AJR Am J Roentgenol 2010; 195 (01) 254-259
  • 33 Rosenkrantz AB, Neil J, Kong X. et al. Prostate cancer: comparison of 3D T2-weighted with conventional 2D T2-weighted imaging for image quality and tumor detection. AJR Am J Roentgenol 2010; 194 (02) 446-452
  • 34 Viallon M, Vargas MI, Jlassi H, Lövblad KO, Delavelle J. High-resolution and functional magnetic resonance imaging of the brachial plexus using an isotropic 3D T2 STIR (short term inversion recovery) SPACE sequence and diffusion tensor imaging. Eur Radiol 2008; 18 (05) 1018-1023
  • 35 Deshmane A, Gulani V, Griswold MA, Seiberlich N. Parallel MR imaging. J Magn Reson Imaging 2012; 36 (01) 55-72
  • 36 Yang AC, Kretzler M, Sudarski S, Gulani V, Seiberlich N. Sparse reconstruction techniques in magnetic resonance imaging: methods, applications, and challenges to clinical adoption. Invest Radiol 2016; 51 (06) 349-364
  • 37 Lecouvet FE, Vande Berg BC, Malghem J, Omoumi P, Simoni P. Diffusion-weighted MR imaging: adjunct or alternative to T1-weighted MR imaging for prostate carcinoma bone metastases?. Radiology 2009; 252 (02) 624
  • 38 Lauenstein TC, Goehde SC, Herborn CU. et al. Three-dimensional volumetric interpolated breath-hold MR imaging for whole-body tumor staging in less than 15 minutes: a feasibility study. AJR Am J Roentgenol 2002; 179 (02) 445-449
  • 39 Thomson V, Pialat JB, Gay F. et al. Whole-body MRI for metastases screening: a preliminary study using 3D VIBE sequences with automatic subtraction between noncontrast and contrast enhanced images. Am J Clin Oncol 2008; 31 (03) 285-292
  • 40 Pasoglou V, Michoux N, Peeters F. et al. Whole-body 3D T1-weighted MR imaging in patients with prostate cancer: feasibility and evaluation in screening for metastatic disease. Radiology 2015; 275 (01) 155-166
  • 41 Johnston EW, Latifoltojar A, Sidhu HS. et al. Multiparametric whole-body 3.0-T MRI in newly diagnosed intermediate- and high-risk prostate cancer: diagnostic accuracy and interobserver agreement for nodal and metastatic staging. Eur Radiol 2019; 29 (06) 3159-3169
  • 42 Lecouvet FE, Pasoglou V, Van Nieuwenhove S. et al. Shortening the acquisition time of whole-body MRI: 3D T1 gradient echo Dixon vs fast spin echo for metastatic screening in prostate cancer. Eur Radiol 2020; 30 (06) 3083-3093
  • 43 Balasubramanya R, Selvarajan SK, Cox M. et al. Imaging of ocular melanoma metastasis. Br J Radiol 2016; 89 (1065): 20160092
  • 44 Padhani AR, Lecouvet FE, Tunariu N. et al. METastasis Reporting and Data System for Prostate Cancer: practical guidelines for acquisition, interpretation, and reporting of whole-body magnetic resonance imaging-based evaluations of multiorgan involvement in advanced prostate cancer. Eur Urol 2017; 71 (01) 81-92
  • 45 National Institute for Health and Care Excellence (NICE) pathways. Myeloma overview. 2021 . Available April 6, 2021 at: https://pathways.nice.org.uk/pathways/myeloma
  • 46 Chantry A, Kazmi M, Barrington S. et al; British Society for Haematology Guidelines. Guidelines for the use of imaging in the management of patients with myeloma. Br J Haematol 2017; 178 (03) 380-393
  • 47 Messiou C, Hillengass J, Delorme S. et al. Guidelines for acquisition, interpretation, and reporting of whole-body MRI in myeloma: Myeloma Response Assessment and Diagnosis System (MY-RADS). Radiology 2019; 291 (01) 5-13
  • 48 Latifoltojar A, Hall-Craggs M, Bainbridge A. et al. Whole-body MRI quantitative biomarkers are associated significantly with treatment response in patients with newly diagnosed symptomatic multiple myeloma following bortezomib induction. Eur Radiol 2017; 27 (12) 5325-5336
  • 49 Ohno Y, Nishio M, Koyama H. et al. Comparison of the utility of whole-body MRI with and without contrast-enhanced Quick 3D and double RF fat suppression techniques, conventional whole-body MRI, PET/CT and conventional examination for assessment of recurrence in NSCLC patients. Eur J Radiol 2013; 82 (11) 2018-2027
  • 50 Wasa J, Nishida Y, Tsukushi S. et al. MRI features in the differentiation of malignant peripheral nerve sheath tumors and neurofibromas. AJR Am J Roentgenol 2010; 194 (06) 1568-1574
  • 51 Fayad LM, Blakeley J, Plotkin S, Widemann B, Jacobs MA. Whole body MRI at 3T with quantitative diffusion weighted imaging and contrast-enhanced sequences for the characterization of peripheral lesions in patients with neurofibromatosis type 2 and schwannomatosis. ISRN Radiol 2013; 2013: 627932
  • 52 Ahlawat S, Fayad LM, Khan MS. et al; Whole Body MRI Committee for the REiNS International Collaboration, REiNS International Collaboration Members 2016. Current whole-body MRI applications in the neurofibromatoses: NF1, NF2, and schwannomatosis. Neurology 2016; 87 (07, Suppl 1) S31-S39
  • 53 Pedrini E, Jennes I, Tremosini M. et al. Genotype-phenotype correlation study in 529 patients with multiple hereditary exostoses: identification of “protective” and “risk” factors. J Bone Joint Surg Am 2011; 93 (24) 2294-2302
  • 54 Verdegaal SH, Bovée JV, Pansuriya TC. et al. Incidence, predictive factors, and prognosis of chondrosarcoma in patients with Ollier disease and Maffucci syndrome: an international multicenter study of 161 patients. Oncologist 2011; 16 (12) 1771-1779
  • 55 Staal H, Dremmen M, Robben S, Witlox A, van Rhijn L. The use of whole-body MR imaging in children with HMO, an extended case study in two patients. Pediatr Ther 2016;6(01):
  • 56 Jurik AG, Jørgensen PH, Mortensen MM. Whole-body MRI in assessing malignant transformation in multiple hereditary exostoses and enchondromatosis: audit results and literature review. Skeletal Radiol 2020; 49 (01) 115-124
  • 57 Fritz J. The contributions of whole-body magnetic resonance imaging for the diagnosis and management of chronic recurrent multifocal osteomyelitis. J Rheumatol 2015; 42 (08) 1359-1360
  • 58 Fritz J, Tzaribatchev N, Claussen CD, Carrino JA, Horger MS. Chronic recurrent multifocal osteomyelitis: comparison of whole-body MR imaging with radiography and correlation with clinical and laboratory data. Radiology 2009; 252 (03) 842-851
  • 59 Vander Cruyssen B, Hoffman IE, Peene I. et al. Prediction models for rheumatoid arthritis during diagnostic investigation: evaluation of combinations of rheumatoid factor, anti-citrullinated protein/peptide antibodies and the human leucocyte antigen-shared epitope. Ann Rheum Dis 2007; 66 (03) 364-369
  • 60 Althoff CE, Appel H, Rudwaleit M. et al. Whole-body MRI as a new screening tool for detecting axial and peripheral manifestations of spondyloarthritis. Ann Rheum Dis 2007; 66 (07) 983-985
  • 61 Poggenborg RP, Eshed I, Østergaard M. et al. Enthesitis in patients with psoriatic arthritis, axial spondyloarthritis and healthy subjects assessed by ‘head-to-toe’ whole-body MRI and clinical examination. Ann Rheum Dis 2015; 74 (05) 823-829
  • 62 Hermann KG, Landewé RB, Braun J, van der Heijde DM. Magnetic resonance imaging of inflammatory lesions in the spine in ankylosing spondylitis clinical trials: is paramagnetic contrast medium necessary?. J Rheumatol 2005; 32 (10) 2056-2060
  • 63 Bredella MA, Steinbach LS, Morgan S, Ward M, Davis JC. MRI of the sacroiliac joints in patients with moderate to severe ankylosing spondylitis. AJR Am J Roentgenol 2006; 187 (06) 1420-1426
  • 64 Merlini L, Carpentier M, Ferrey S, Anooshiravani M, Poletti PA, Hanquinet S. Whole-body MRI in children: would a 3D STIR sequence alone be sufficient for investigating common paediatric conditions? A comparative study. Eur J Radiol 2017; 88: 155-162
  • 65 Dalakas MC. Polymyositis, dermatomyositis and inclusion-body myositis. N Engl J Med 1991; 325 (21) 1487-1498
  • 66 Pitt AM, Fleckenstein JL, Greenlee Jr RG, Burns DK, Bryan WW, Haller R. MRI-guided biopsy in inflammatory myopathy: initial results. Magn Reson Imaging 1993; 11 (08) 1093-1099
  • 67 Van De Vlekkert J, Maas M, Hoogendijk JE, De Visser M, Van Schaik IN. Combining MRI and muscle biopsy improves diagnostic accuracy in subacute-onset idiopathic inflammatory myopathy. Muscle Nerve 2015; 51 (02) 253-258
  • 68 Mercuri E, Pichiecchio A, Counsell S. et al. A short protocol for muscle MRI in children with muscular dystrophies. Eur J Paediatr Neurol 2002; 6 (06) 305-307
  • 69 Murphy WA, Totty WG, Carroll JE. MRI of normal and pathologic skeletal muscle. AJR Am J Roentgenol 1986; 146 (03) 565-574
  • 70 Malattia C, Damasio MB, Madeo A. et al. Whole-body MRI in the assessment of disease activity in juvenile dermatomyositis. Ann Rheum Dis 2014; 73 (06) 1083-1090
  • 71 Quijano-Roy S, Avila-Smirnow D, Carlier RY. WB-MRI muscle study group. Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord 2012; 22 (Suppl. 02) S68-S84
  • 72 Tomas X, Milisenda JC, Garcia-Diez AI. et al. Whole-body MRI and pathological findings in adult patients with myopathies. Skeletal Radiol 2019; 48 (05) 653-676
  • 73 Salvarani C, Cantini F, Hunder GG. Polymyalgia rheumatica and giant-cell arteritis. Lancet 2008; 372 (9634): 234-245
  • 74 Salvarani C, Cantini F, Olivieri I. et al. Proximal bursitis in active polymyalgia rheumatica. Ann Intern Med 1997; 127 (01) 27-31
  • 75 Mackie SL, Pease CT, Fukuba E. et al. Whole-body MRI of patients with polymyalgia rheumatica identifies a distinct subset with complete patient-reported response to glucocorticoids. Ann Rheum Dis 2015; 74 (12) 2188-2192
  • 76 McGonagle D, Pease C, Marzo-Ortega H, O'Connor P, Gibbon W, Emery P. Comparison of extracapsular changes by magnetic resonance imaging in patients with rheumatoid arthritis and polymyalgia rheumatica. J Rheumatol 2001; 28 (08) 1837-1841
  • 77 Ochi J, Nozaki T, Okada M. et al. MRI findings of the shoulder and hip joint in patients with polymyalgia rheumatica. Mod Rheumatol 2015; 25 (05) 761-767
  • 78 Feng L, Benkert T, Block KT, Sodickson DK, Otazo R, Chandarana H. Compressed sensing for body MRI. J Magn Reson Imaging 2017; 45 (04) 966-987
  • 79 Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging 2019; 49 (04) 939-954
  • 80 Lin DJ, Johnson PM, Knoll F, Lui YW. Artificial intelligence for MR image reconstruction: an overview for clinicians. J Magn Reson Imaging 2021; 53 (04) 1015-1028
  • 81 Maeder Y, Dunet V, Richard R, Becce F, Omoumi P. Bone marrow metastases: T2-weighted Dixon spin-echo fat images can replace T1-weighted spin-echo images. Radiology 2018; 286 (03) 948-959
  • 82 Østergaard M, Peterfy CG, Bird P. et al. The OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging (MRI) Scoring System: updated Recommendations by the OMERACT MRI in Arthritis Working Group. J Rheumatol 2017; 44 (11) 1706-1712
  • 83 Axelsen MB, Eshed I, Duer-Jensen A, Møller JM, Pedersen SJ, Østergaard M. Whole-body MRI assessment of disease activity and structural damage in rheumatoid arthritis: first step towards an MRI joint count. Rheumatology (Oxford) 2014; 53 (05) 845-853
  • 84 Kamishima T, Fujieda Y, Atsumi T. et al. Contrast-enhanced whole-body joint MRI in patients with unclassified arthritis who develop early rheumatoid arthritis within 2 years: feasibility study and correlation with MRI findings of the hands. AJR Am J Roentgenol 2010; 195 (04) W287-W292