Digestive Disease Interventions 2022; 06(02): 148-154
DOI: 10.1055/s-0041-1742214
Review Article

Sarcopenia of Cirrhosis and the Therapeutic Potential of Transjugular Intrahepatic Portosystemic Shunt Creation

Barry Schlansky
1   Division of Gastroenterology and Hepatology, Department of Medicine, Oregon Health and Science University, Portland, Oregon
,
2   Department of Interventional Radiology, Dotter Interventional Institute, Oregon Health and Science University, Portland, Oregon
› Author Affiliations

Abstract

Sarcopenia is a major sequela of cirrhosis, contributing to significant morbidity and mortality. Advances in body composition analysis using medical imaging have begun to identify changes in skeletal muscle and fat that are prognostic of the impact of sarcopenia on medical outcomes in cirrhosis and other pathologies. Recently, observational studies have shown a correlation between transjugular intrahepatic portosystemic shunt (TIPS) creation and a reversal of the progressive muscle loss in cirrhosis. This reversal is also associated with improved clinical outcomes and survival. This review summarizes current understanding of cirrhotic sarcopenia, and discusses the implications of TIPS creation in reversing this process.



Publication History

Received: 17 November 2021

Accepted: 01 December 2021

Article published online:
10 January 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Lai JC, Tandon P, Bernal W. et al. Malnutrition, frailty, and sarcopenia in patients with cirrhosis: 2021 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 2021; 74 (03) 1611-1644
  • 2 Anand AC. Nutrition and muscle in cirrhosis. J Clin Exp Hepatol 2017; 7 (04) 340-357
  • 3 Mazurak VC, Tandon P, Montano-Loza AJ. Nutrition and the transplant candidate. Liver Transpl 2017; 23 (11) 1451-1464
  • 4 Golovaty I, Tien PC, Price JC, Sheira L, Seligman H, Weiser SD. Food insecurity may be an independent risk factor associated with nonalcoholic fatty liver disease among low-income adults in the United States. J Nutr 2020; 150 (01) 91-98
  • 5 Dunn MA, Josbeno DA, Schmotzer AR. et al. The gap between clinically assessed physical performance and objective physical activity in liver transplant candidates. Liver Transpl 2016; 22 (10) 1324-1332
  • 6 Welch N, Attaway A, Bellar A, Alkhafaji H, Vural A, Dasarathy S. Compound sarcopenia in hospitalized patients with cirrhosis worsens outcomes with increasing age. Nutrients 2021; 13 (02) 13
  • 7 Dasarathy J, McCullough AJ, Dasarathy S. Sarcopenia in alcoholic liver disease: clinical and molecular advances. Alcohol Clin Exp Res 2017; 41 (08) 1419-1431
  • 8 Kim G, Kang SH, Kim MY, Baik SK. Prognostic value of sarcopenia in patients with liver cirrhosis: a systematic review and meta-analysis. PLoS One 2017; 12 (10) e0186990
  • 9 Kierans AS, Kang SK, Rosenkrantz AB. The diagnostic performance of dynamic contrast-enhanced MR imaging for detection of small hepatocellular carcinoma measuring up to 2 cm: a meta-analysis. Radiology 2016; 278 (01) 82-94
  • 10 Tandon P, Ney M, Irwin I. et al. Severe muscle depletion in patients on the liver transplant wait list: its prevalence and independent prognostic value. Liver Transpl 2012; 18 (10) 1209-1216
  • 11 Montano-Loza AJ, Meza-Junco J, Prado CM. et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol 2012; 10: 166-173 , 173.e161
  • 12 Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol 2016; 65 (06) 1232-1244
  • 13 Carias S, Castellanos AL, Vilchez V. et al. Nonalcoholic steatohepatitis is strongly associated with sarcopenic obesity in patients with cirrhosis undergoing liver transplant evaluation. J Gastroenterol Hepatol 2016; 31 (03) 628-633
  • 14 Eslamparast T, Montano-Loza AJ, Raman M, Tandon P. Sarcopenic obesity in cirrhosis - the confluence of 2 prognostic titans. Liver Int 2018; 38 (10) 1706-1717
  • 15 Ooi PH, Mazurak VC, Bhargava R. et al. Myopenia and reduced subcutaneous adiposity in children with liver disease are associated with adverse outcomes. JPEN J Parenter Enteral Nutr 2021; 45 (05) 961-972
  • 16 Woolfson JP, Perez M, Chavhan GB. et al. Sarcopenia in children with end-stage liver disease on the transplant waiting list. Liver Transpl 2021; 27 (05) 641-651
  • 17 Montano-Loza AJ, Angulo P, Meza-Junco J. et al. Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. J Cachexia Sarcopenia Muscle 2016; 7 (02) 126-135
  • 18 Hari A, Berzigotti A, Štabuc B, Caglevič N. Muscle psoas indices measured by ultrasound in cirrhosis - preliminary evaluation of sarcopenia assessment and prediction of liver decompensation and mortality. Dig Liver Dis 2019; 51 (11) 1502-1507
  • 19 van Vugt JL, Levolger S, de Bruin RW, van Rosmalen J, Metselaar HJ, IJzermans JN. Systematic review and meta-analysis of the impact of computed tomography-assessed skeletal muscle mass on outcome in patients awaiting or undergoing liver transplantation. Am J Transplant 2016; 16 (08) 2277-2292
  • 20 Praktiknjo M, Book M, Luetkens J. et al. Fat-free muscle mass in magnetic resonance imaging predicts acute-on-chronic liver failure and survival in decompensated cirrhosis. Hepatology 2018; 67 (03) 1014-1026
  • 21 Englesbe MJ, Patel SP, He K. et al. Sarcopenia and mortality after liver transplantation. J Am Coll Surg 2010; 211 (02) 271-278
  • 22 Kaido T, Ogawa K, Fujimoto Y. et al. Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. Am J Transplant 2013; 13 (06) 1549-1556
  • 23 Hamaguchi Y, Kaido T, Okumura S. et al. Impact of quality as well as quantity of skeletal muscle on outcomes after liver transplantation. Liver Transpl 2014; 20 (11) 1413-1419
  • 24 Kuo SZ, Ahmad M, Dunn MA. et al. Sarcopenia predicts post-transplant mortality in acutely ill men undergoing urgent evaluation and liver transplantation. Transplantation 2019; 103 (11) 2312-2317
  • 25 Esser H, Resch T, Pamminger M. et al. Preoperative assessment of muscle mass using computerized tomography scans to predict outcomes following orthotopic liver transplantation. Transplantation 2019; 103 (12) 2506-2514
  • 26 Kalafateli M, Mantzoukis K, Choi Yau Y. et al. Malnutrition and sarcopenia predict post-liver transplantation outcomes independently of the Model for End-stage Liver Disease score. J Cachexia Sarcopenia Muscle 2017; 8 (01) 113-121
  • 27 Hara N, Iwasa M, Sugimoto R. et al. Sarcopenia and sarcopenic obesity are prognostic factors for overall survival in patients with cirrhosis. Intern Med 2016; 55 (08) 863-870
  • 28 Marasco G, Serenari M, Renzulli M. et al. Clinical impact of sarcopenia assessment in patients with hepatocellular carcinoma undergoing treatments. J Gastroenterol 2020; 55 (10) 927-943
  • 29 Lanza E, Masetti C, Messana G. et al; Humanitas HCC Multidisciplinary Group. Sarcopenia as a predictor of survival in patients undergoing bland transarterial embolization for unresectable hepatocellular carcinoma. PLoS One 2020; 15 (06) e0232371
  • 30 Ha Y, Kim D, Han S. et al. Sarcopenia predicts prognosis in patients with newly diagnosed hepatocellular carcinoma, independent of tumor stage and liver function. Cancer Res Treat 2018; 50 (03) 843-851
  • 31 Antonelli G, Gigante E, Iavarone M. et al. Sarcopenia is associated with reduced survival in patients with advanced hepatocellular carcinoma undergoing sorafenib treatment. United European Gastroenterol J 2018; 6 (07) 1039-1048
  • 32 Kobayashi T, Kawai H, Nakano O. et al. Rapidly declining skeletal muscle mass predicts poor prognosis of hepatocellular carcinoma treated with transcatheter intra-arterial therapies. BMC Cancer 2018; 18 (01) 756
  • 33 Vural A, Attaway A, Welch N, Zein J, Dasarathy S. Skeletal muscle loss phenotype in cirrhosis: a nationwide analysis of hospitalized patients. Clin Nutr 2020; 39 (12) 3711-3720
  • 34 Tapper EB, Zhang P, Garg R. et al. Body composition predicts mortality and decompensation in compensated cirrhosis patients: a prospective cohort study. JHEP Rep 2019; 2 (01) 100061
  • 35 Ando Y, Ishigami M, Ito T. et al. Sarcopenia impairs health-related quality of life in cirrhotic patients. Eur J Gastroenterol Hepatol 2019; 31 (12) 1550-1556
  • 36 van Vugt JLA, Buettner S, Alferink LJM. et al. Low skeletal muscle mass is associated with increased hospital costs in patients with cirrhosis listed for liver transplantation-a retrospective study. Transpl Int 2018; 31 (02) 165-174
  • 37 Bhanji RA, Moctezuma-Velazquez C, Duarte-Rojo A. et al. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol Int 2018; 12 (04) 377-386
  • 38 Kamachi S, Mizuta T, Otsuka T. et al. Sarcopenia is a risk factor for the recurrence of hepatocellular carcinoma after curative treatment. Hepatol Res 2016; 46 (02) 201-208
  • 39 Boster JM, Browne LP, Pan Z, Zhou W, Ehrlich PF, Sundaram SS. Higher mortality in pediatric liver transplant candidates with sarcopenia. Liver Transpl 2021; 27 (06) 808-817
  • 40 European Association for the Study of the Liver. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J Hepatol 2019; 70: 172-193
  • 41 Carey EJ, Lai JC, Wang CW. et al; Fitness, Life Enhancement, and Exercise in Liver Transplantation Consortium. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl 2017; 23 (05) 625-633
  • 42 Tandon P, Mourtzakis M, Low G. et al. Comparing the variability between measurements for sarcopenia using magnetic resonance imaging and computed tomography imaging. Am J Transplant 2016; 16 (09) 2766-2767
  • 43 Martin L, Birdsell L, Macdonald N. et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol 2013; 31 (12) 1539-1547
  • 44 Lindqvist C, Brismar TB, Majeed A, Wahlin S. Assessment of muscle mass depletion in chronic liver disease: dual-energy X-ray absorptiometry compared with computed tomography. Nutrition 2019; 61: 93-98
  • 45 Giusto M, Lattanzi B, Albanese C. et al. Sarcopenia in liver cirrhosis: the role of computed tomography scan for the assessment of muscle mass compared with dual-energy X-ray absorptiometry and anthropometry. Eur J Gastroenterol Hepatol 2015; 27 (03) 328-334
  • 46 Alberino F, Gatta A, Amodio P. et al. Nutrition and survival in patients with liver cirrhosis. Nutrition 2001; 17 (06) 445-450
  • 47 Tandon P, Low G, Mourtzakis M. et al. A model to identify sarcopenia in patients with cirrhosis. Clin Gastroenterol Hepatol 2016; 14 (10) 1473-1480.e3
  • 48 Pirlich M, Schütz T, Spachos T. et al. Bioelectrical impedance analysis is a useful bedside technique to assess malnutrition in cirrhotic patients with and without ascites. Hepatology 2000; 32 (06) 1208-1215
  • 49 Fialla AD, Israelsen M, Hamberg O, Krag A, Gluud LL. Nutritional therapy in cirrhosis or alcoholic hepatitis: a systematic review and meta-analysis. Liver Int 2015; 35 (09) 2072-2078
  • 50 Berzigotti A, Albillos A, Villanueva C. et al; Ciberehd SportDiet Collaborative Group. Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: the SportDiet study. Hepatology 2017; 65 (04) 1293-1305
  • 51 Berzigotti A, Saran U, Dufour J-F. Physical activity and liver diseases. Hepatology 2016; 63 (03) 1026-1040
  • 52 Makhlouf NA, Mahran ZG, Sadek SH, Magdy DM, Makhlouf HA. Six-minute walk test before and after large-volume paracentesis in cirrhotic patients with refractory ascites: a pilot study. Arab J Gastroenterol 2019; 20 (02) 81-85
  • 53 Aqel BA, Scolapio JS, Dickson RC, Burton DD, Bouras EP. Contribution of ascites to impaired gastric function and nutritional intake in patients with cirrhosis and ascites. Clin Gastroenterol Hepatol 2005; 3 (11) 1095-1100
  • 54 Kumar A, Davuluri G, Silva RNE. et al. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology 2017; 65 (06) 2045-2058
  • 55 Lai JC, Segev DL, McCulloch CE, Covinsky KE, Dodge JL, Feng S. Physical frailty after liver transplantation. Am J Transplant 2018; 18 (08) 1986-1994
  • 56 Kaido T, Tamai Y, Hamaguchi Y. et al. Effects of pretransplant sarcopenia and sequential changes in sarcopenic parameters after living donor liver transplantation. Nutrition 2017; 33: 195-198
  • 57 Bergerson JT, Lee JG, Furlan A. et al. Liver transplantation arrests and reverses muscle wasting. Clin Transplant 2015; 29 (03) 216-221
  • 58 Bhanji RA, Takahashi N, Moynagh MR. et al. The evolution and impact of sarcopenia pre- and post-liver transplantation. Aliment Pharmacol Ther 2019; 49 (06) 807-813
  • 59 Tsien C, Garber A, Narayanan A. et al. Post-liver transplantation sarcopenia in cirrhosis: a prospective evaluation. J Gastroenterol Hepatol 2014; 29 (06) 1250-1257
  • 60 Semsarian C, Wu MJ, Ju YK. et al. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 1999; 400 (6744): 576-581
  • 61 Boyer TD, Haskal ZJ. American Association for the Study of Liver Diseases. The role of transjugular intrahepatic portosystemic shunt (TIPS) in the management of portal hypertension: update 2009. Hepatology 2010; 51 (01) 306
  • 62 Jahangiri Y, Pathak P, Tomozawa Y, Li L, Schlansky BL, Farsad K. Muscle gain after transjugular intrahepatic portosystemic shunt creation: time course and prognostic implications for survival in cirrhosis. J Vasc Interv Radiol 2019; 30: 866-872 , e864
  • 63 Artru F, Miquet X, Azahaf M. et al. Consequences of TIPSS placement on the body composition of patients with cirrhosis and severe portal hypertension: a large retrospective CT-based surveillance. Aliment Pharmacol Ther 2020; 52 (09) 1516-1526
  • 64 Benmassaoud A, Roccarina D, Arico F. et al. Sarcopenia does not worsen survival in patients with cirrhosis undergoing transjugular intrahepatic portosystemic shunt for refractory ascites. Am J Gastroenterol 2020; 115 (11) 1911-1914
  • 65 Tsien C, Shah SN, McCullough AJ, Dasarathy S. Reversal of sarcopenia predicts survival after a transjugular intrahepatic portosystemic stent. Eur J Gastroenterol Hepatol 2013; 25 (01) 85-93
  • 66 Shoreibah MG, Mahmoud K, Aboueldahab NA. et al. Psoas muscle density in combination with model for end-stage liver disease score can improve survival predictability in transjugular intrahepatic portosystemic shunts. J Vasc Interv Radiol 2019; 30 (02) 154-161
  • 67 Schumann C, Nguyen DX, Norgard M. et al. Increasing lean muscle mass in mice via nanoparticle-mediated hepatic delivery of follistatin mRNA. Theranostics 2018; 8 (19) 5276-5288
  • 68 Dasarathy S, McCullough AJ, Muc S. et al. Sarcopenia associated with portosystemic shunting is reversed by follistatin. J Hepatol 2011; 54 (05) 915-921
  • 69 Latres E, Mastaitis J, Fury W. et al. Activin A more prominently regulates muscle mass in primates than does GDF8. Nat Commun 2017; 8: 15153
  • 70 Huang X, Li DG, Wang ZR. et al. Expression changes of activin A in the development of hepatic fibrosis. World J Gastroenterol 2001; 7 (01) 37-41
  • 71 Nardelli S, Lattanzi B, Torrisi S. et al. Sarcopenia is risk factor for development of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt placement. Clin Gastroenterol Hepatol 2017; 15 (06) 934-936
  • 72 Gioia S, Merli M, Nardelli S. et al. The modification of quantity and quality of muscle mass improves the cognitive impairment after TIPS. Liver Int 2019; 39 (05) 871-877
  • 73 Ronald J, Bozdogan E, Zaki IH. et al. Relative sarcopenia with excess adiposity predicts survival after transjugular intrahepatic portosystemic shunt creation. AJR Am J Roentgenol 2020; 214 (01) 200-205
  • 74 Berry K, Lerrigo R, Liou IW, Ioannou GN. Association between transjugular intrahepatic portosystemic shunt and survival in patients with cirrhosis. Clin Gastroenterol Hepatol 2016; 14 (01) 118-123
  • 75 Unger LW, Stork T, Bucsics T. et al. The role of TIPS in the management of liver transplant candidates. United European Gastroenterol J 2017; 5 (08) 1100-1107