Z Gastroenterol 2016; 54(08): 748-759
DOI: 10.1055/s-0042-105520
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

“Miniguts” from plucked human hair meet Crohn’s disease

Generierung von pluripotenten Stammzellen-basierten intestinalen Organoiden als potenzielles Modellsystem für M. Crohn
M. Hohwieler#
1   Department of Internal Medicine I, Ulm University, Ulm, Germany
,
S. Renz#
1   Department of Internal Medicine I, Ulm University, Ulm, Germany
,
S. Liebau
2   Institute of Neuroanatomy, Eberhard Karls University Tuebingen, Germany
,
Q. Lin
3   Department of Cell Biology, Institute for Biomedical Engineering, Medical Faculty, RWTH University Aachen, Germany
,
A. Lechel
1   Department of Internal Medicine I, Ulm University, Ulm, Germany
,
J. Klaus
1   Department of Internal Medicine I, Ulm University, Ulm, Germany
,
L. Perkhofer
1   Department of Internal Medicine I, Ulm University, Ulm, Germany
,
M. Zenke
3   Department of Cell Biology, Institute for Biomedical Engineering, Medical Faculty, RWTH University Aachen, Germany
,
T. Seufferlein
1   Department of Internal Medicine I, Ulm University, Ulm, Germany
,
A. Illing
1   Department of Internal Medicine I, Ulm University, Ulm, Germany
,
M. Müller$
1   Department of Internal Medicine I, Ulm University, Ulm, Germany
,
A. Kleger$
1   Department of Internal Medicine I, Ulm University, Ulm, Germany
› Author Affiliations
Further Information

Publication History

30 December 2015

09 March 2016

Publication Date:
14 July 2016 (online)

Abstract

Human pluripotent stem cells represent a powerful tool to study human embryonic development and disease but also open up novel strategies for cell replacement therapies. Their capacity to give rise to every cell type of the human body, meanwhile, enables researchers to generate high yields of mesodermal, ectodermal, but also endodermal-derived tissues such as hepatic, pancreatic, or intestinal cells. Another progress in the field came with the advent of 3-dimensional culture conditions, so-called organoids, which facilitate maturation of stem cells and in turn more faithfully recapitulate human tissue architecture. While several studies reported the derivation of organoid cultures from adult intestinal tissue, the derivation of intestinal organoids derived from plucked human hair of Crohn’s disease patients has not been reported. The current research project reports such successful generation and characterization of induced pluripotent stem cells (iPSCs) derived from hair sheet keratinocyte cultures of a patient with Crohn's disease. Stepwise differentiation along the intestinal lineage showed no differences in intermediate stages such as definitive endoderm formation. We also directed the patterned primitive gut tube toward intestinal organoids resembling the cellular architecture of human “miniguts”. As expected from current pathophysiological knowledge on Crohn's disease, there were no obvious morphological differences in the “miniguts” derived from healthy control and diseased patient-induced pluripotent stem cells. Taken together, our platform will enable for detailed and complementary phenotyping of the pathophysiology of Crohn’s disease in a novel disease-in-a-dish format.

Zusammenfassung

Humane pluripotente Stammzellen stellen ein wertvolles Instrument zur Erforschung menschlicher Embryonalentwicklung und zahlreicher Erkrankungen dar; darüber hinaus ergeben sich perspektivisch neuartige Strategien für Zellersatztherapien. Die Fähigkeit von Stammzellen, sich in jede Zellart des menschlichen Körpers zu entwickeln, ermöglicht es mittlerweile, aus allen drei Keimblättern (Mesoderm, Ektoderm und Endoderm) hochdifferenzierte Gewebestrukturen wie etwa Leber-, Pankreas- oder Darmzellen in größeren Mengen zu generieren. Ein weiterer Fortschritt trat mit der Einführung von 3-dimensionalen Kulturbedingungen ein, die eine komplexe Ausreifung von Stammzellen erheblich erleichtern. Dadurch können sog. Organoide entstehen, welche die menschliche Gewebsarchitektur sehr genau widerspiegeln. Während mehrere Studien die Generierung von Organoiden aus adultem Darmgewebe beschreiben, wurde bisher die Erzeugung von Organoiden aus Haarwurzel-Keratinozyten von Patienten mit Morbus Crohn noch nicht beschrieben. In der hier vorliegenden Arbeit berichten wir erstmalig über die erfolgreiche Herstellung und Charakterisierung von induzierten pluripotenten Stammzellen (iPSCs) abstammend von einem Patienten mit M. Crohn. Die schrittweise Differenzierung dieser iPS-Zellen hin zu Darmgewebe zeigte keine Unterschiede bei der Erzeugung von Endoderm. Eine weitere Differenzierung des komplexen Gewebes bis hin zur Entstehung von Strukturen, die Darmorganoiden („Miniguts“) in höchstem Maße ähnlich sind, war möglich. Wie aufgrund des derzeitigen Wissenstands über M. Crohn zu erwarten ergaben sich keine erkennbaren morphologischen Veränderungen im Vergleich zu Organoiden einer gesunden Kontrollperson. Mit der vorliegenden Arbeit legen wir die Grundlage für ein neues In-vitro-Modellsystem, das weitergehende Untersuchungen, insbesondere der Interaktion von Zellen des Immunsystems, Antigenen, Inflammationsmediatoren und den komplexen Darmorganoiden ermöglichen wird.

# Equal contribution.


$ These authors jointly supervised this work.


 
  • References

  • 1 Ai Z, Shao J, Shi X et al. Maintenance of Self-Renewal and Pluripotency in J1 Mouse Embryonic Stem Cells through Regulating Transcription Factor and MicroRNA Expression Induced by PD0325901. Stem Cells International 2016; 2016: 12
  • 2 Carter RL, Chen Y, Kunkanjanawan T et al. Reversal of cellular phenotypes in neural cells derived from Huntington’s disease monkey-induced pluripotent stem cells. Stem Cell Reports 2014; 3: 585-593
  • 3 Chen S, Borowiak M, Fox JL et al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 2009; 5: 258-265
  • 4 Klingenstein M, Raab S, Achberger K et al. TBX3 Knockdown Decreases Reprogramming Efficiency of Human Cells. Stem Cells Int 2016; 2016: 6759343
  • 5 Liebau S, Gadue P, Nalapareddy K et al. Factors Regulating Stem Cell Biology in Development and Disease. Stem Cells International DOI:
  • 6 Weidgang CE, Seufferlein T, Kleger A et al. Pluripotency Factors on Their Lineage Move. Stem Cells International 2016; 2016: 16
  • 7 Chen Y, Blair K, Smith A. Robust self-renewal of rat embryonic stem cells requires fine-tuning of glycogen synthase kinase-3 inhibition. Stem Cell Reports 2013; 1: 209-217
  • 8 Leitch HG, Nichols J, Humphreys P et al. Rebuilding pluripotency from primordial germ cells. Stem Cell Reports 2013; 1: 66-78
  • 9 Russell R, Ilg M, Lin Q et al. A Dynamic Role of TBX3 in the Pluripotency Circuitry. Stem Cell Reports 2015; DOI:
  • 10 Jiang W, Zhang D, Bursac N et al. WNT3 is a biomarker capable of predicting the definitive endoderm differentiation potential of hESCs. Stem Cell Reports 2013; 1: 46-52
  • 11 Klingenstein M, Raab S, Achberger K et al. TBX3 Knockdown Decreases Reprogramming Efficiency of Human Cells. Stem Cells International 2016; 2016: 7
  • 12 Kurek D, Neagu A, Tastemel M et al. Endogenous WNT Signals Mediate BMP-Induced and Spontaneous Differentiation of Epiblast Stem Cells and Human Embryonic Stem Cells. Stem Cell Reports 2015; 4: 114-128
  • 13 Maehr R, Chen S, Snitow M et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci U S A 2009; 106: 15768-15773
  • 14 Raya A, Rodriguez-Piza I, Guenechea G et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 2009; 460: 53-59
  • 15 Rashid ST, Corbineau S, Hannan N et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. The Journal of clinical investigation 2010; 120: 3127-3136
  • 16 Liu GH, Barkho BZ, Ruiz S et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 2011; 472: 221-225
  • 17 Brennand KJ, Simone A, Jou J et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011; DOI: 10.1038/nature09915.
  • 18 Itzhaki I, Maizels L, Huber I et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 2011; 471: 225-229
  • 19 Takebe T, Sekine K, Enomura M et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013; 499: 481-484
  • 20 Tulpule A, Kelley JM, Lensch MW et al. Pluripotent stem cell models of Shwachman-Diamond syndrome reveal a common mechanism for pancreatic and hematopoietic dysfunction. Cell stem cell 2013; 12: 727-736
  • 21 Huang L, Holtzinger A, Jagan I et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med 2015; DOI: 10.1038/nm.3973.
  • 22 Kim J, Hoffman JP, Alpaugh RK et al. An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Rep 2013; 3: 2088-2099
  • 23 Reichert M, Blume K, Kleger A et al. Developmental Pathways Direct Pancreatic Cancer Initiation from Its Cellular Origin. Stem Cells International 2016; 2016: 8
  • 24 Russell R, Perkhofer L, Liebau S et al. Loss of ATM accelerates pancreatic cancer formation and epithelial-mesenchymal transition. Nat Commun 2015; 6: 7677
  • 25 Teo AK, Tsuneyoshi N, Hoon S et al. PDX1 binds and represses hepatic genes to ensure robust pancreatic commitment in differentiating human embryonic stem cells. Stem Cell Reports 2015; 4: 578-590
  • 26 Buganim Y, Faddah DA, Jaenisch R. Mechanisms and models of somatic cell reprogramming. Nat Rev Genet 2013; 14: 427-439
  • 27 Saha K, Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell stem cell 2009; 5: 584-595
  • 28 Theunissen TW, Jaenisch R. Molecular control of induced pluripotency. Cell stem cell 2014; 14: 720-734
  • 29 Mou H, Zhao R, Sherwood R et al. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell stem cell 2012; 10: 385-397
  • 30 Gadue P, Gouon-Evans V, Cheng X et al. Generation of monoclonal antibodies specific for cell surface molecules expressed on early mouse endoderm. Stem cells 2009; 27: 2103-2113
  • 31 Borowiak M, Maehr R, Chen S et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell stem cell 2009; 4: 348-358
  • 32 Shiraki N, Yoshida T, Araki K et al. Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem cells 2008; 26: 874-885
  • 33 Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res 1993; 10: 1093-1095
  • 34 Chen M, Tomkins DJ, Auerbach W et al. Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia. Nat Genet 1996; 12: 448-451
  • 35 Nelson DL, Gibbs RA. Genetics. The critical region in trisomy 21. Science 2004; 306: 619-621
  • 36 Nair G, Hebrok M. Islet formation in mice and men: lessons for the generation of functional insulin-producing beta-cells from human pluripotent stem cells. Curr Opin Genet Dev 2015; 32: 171-180
  • 37 Weidgang CE, Russell R, Tata PR et al. TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports 2013; 1: 248-265
  • 38 Muller M, Schroer J, Azoitei N et al. A time frame permissive for Protein Kinase D2 activity to direct angiogenesis in mouse embryonic stem cells. Scientific reports 2015; 5: 11742
  • 39 Murayama H, Masaki H, Sato H et al. Successful reprogramming of epiblast stem cells by blocking nuclear localization of beta-catenin. Stem Cell Reports 2015; 4: 103-113
  • 40 Nantasanti S, Spee B, Kruitwagen HS et al. Disease Modeling and Gene Therapy of Copper Storage Disease in Canine Hepatic Organoids. Stem Cell Reports 5: 895-907
  • 41 Nostro MC, Sarangi F, Yang C et al. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Reports 2015; 4: 591-604
  • 42 Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annual review of cell and developmental biology 2009; 25: 221-251
  • 43 Kleger A, Liebau S. Calcium-activated potassium channels, cardiogenesis of pluripotent stem cells, and enrichment of pacemaker-like cells. Trends in cardiovascular medicine 2011; 21: 74-83
  • 44 Muller M, Stockmann M, Malan D et al. Ca2+ activated K channels-new tools to induce cardiac commitment from pluripotent stem cells in mice and men. Stem cell reviews 2012; 8: 720-740
  • 45 Kleger A, Loebnitz C, Pusapati GV et al. Protein kinase D2 is an essential regulator of murine myoblast differentiation. PloS one 2011; 6: e14599
  • 46 Kleger A, Seufferlein T, Malan D et al. Modulation of calcium-activated potassium channels induces cardiogenesis of pluripotent stem cells and enrichment of pacemaker-like cells. Circulation 2010; 122: 1823-1836
  • 47 Papatsenko D, Darr H, Kulakovskiy IV et al. Single-Cell Analyses of ESCs Reveal Alternative Pluripotent Cell States and Molecular Mechanisms that Control Self-Renewal. Stem Cell Reports 2015; 5: 207-220
  • 48 Russell R, Ilg M, Lin Q et al. A Dynamic Role of TBX3 in the Pluripotency Circuitry. Stem Cell Reports 5: 1155-1170
  • 49 Waghray A, Saiz N, Jayaprakash AD et al. Tbx3 Controls Dppa3 Levels and Exit from Pluripotency toward Mesoderm. Stem Cell Reports 2015; 5: 97-110
  • 50 Nicholas HRF, Robert FP, Yasir SA et al. Generation of Multipotent Foregut Stem Cells from Human Pluripotent Stem Cells. Stem Cell Reports 1: 293-306
  • 51 Spence JR, Mayhew CN, Rankin SA et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 2011; 470: 105-109
  • 52 Sato T, Vries RG, Snippert HJ et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009; 459: 262-265
  • 53 Boj SF, Hwang CI, Baker LA et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 2015; 160: 324-338
  • 54 Watson CL, Mahe MM, Munera J et al. An in vivo model of human small intestine using pluripotent stem cells. Nat Med 2014; 20: 1310-1314
  • 55 Sakaguchi H, Kadoshima T, Soen M et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nature communications 2015; 6: 8896
  • 56 Bouchi R, Foo KS, Hua H et al. FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures. Nature communications 2014; 5: 4242
  • 57 Freedman BS, Brooks CR, Lam AQ et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 2015; 6: 8715
  • 58 Simmini S, Bialecka M, Huch M et al. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2. Nature communications 2014; 5: 5728
  • 59 Forster R, Chiba K, Schaeffer L et al. Human Intestinal Tissue with Adult Stem Cell Properties Derived from Pluripotent Stem Cells. Stem Cell Reports 2: 838-852
  • 60 McCracken KW, Cata EM, Crawford CM et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 2014; 516: 400-404
  • 61 Ostaff MJ, Stange EF, Wehkamp J. Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Mol Med 2013; 5: 1465-1483
  • 62 Jianzhong H. The genetic predisposition and the interplay of host genetics and gut microbiome in Crohn disease. Clinics in laboratory medicine 2014; 34: 763-770
  • 63 Abraham C, Cho JH. Inflammatory bowel disease. The New England journal of medicine 2009; 361: 2066-2078
  • 64 Koslowski MJ, Kubler I, Chamaillard M et al. Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn’s disease. PloS one 2009; 4: e4496
  • 65 Koslowski MJ, Teltschik Z, Beisner J et al. Association of a functional variant in the Wnt co-receptor LRP6 with early onset ileal Crohn’s disease. PLoS Genet 2012; 8: e1002523
  • 66 Becker S, Oelschlaeger TA, Wullaert A et al. Bacteria regulate intestinal epithelial cell differentiation factors both in vitro and in vivo. PloS one 2013; 8: e55620
  • 67 Ostanin DV, Bao J, Koboziev I et al. T cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade. Am J Physiol Gastrointest Liver Physiol 2009; 296: G135-G146
  • 68 Yang S, Wang B, Humphries F et al. Pellino3 ubiquitinates RIP2 and mediates Nod2-induced signaling and protective effects in colitis. Nat Immunol 2013; 14: 927-936
  • 69 Illing A, Stockmann M, Swamy Telugu N et al. Definitive Endoderm Formation from Plucked Human Hair-Derived Induced Pluripotent Stem Cells and SK Channel Regulation. Stem cells international 2013; 2013: 360573
  • 70 Frank S, Zhang M, Scholer HR et al. Small molecule-assisted, line-independent maintenance of human pluripotent stem cells in defined conditions. PloS one 2012; 7: e41958
  • 71 McCracken KW, Howell JC, Wells JM et al. Generating human intestinal tissue from pluripotent stem cells in vitro. Nature protocols 2011; 6: 1920-1928
  • 72 Stockmann M, Linta L, Fohr KJ et al. Developmental and functional nature of human iPSC derived motoneurons. Stem cell reviews 2013; 9: 475-492
  • 73 Liebau S, Stockmann M, Illing A et al. Induced pluripotent stem cells. A new resource in modern medicine. Der Internist 2014; 55: 460-469
  • 74 Raab S, Klingenstein M, Liebau S et al. A Comparative View on Human Somatic Cell Sources for iPSC Generation. Stem Cells Int 2014; 2014: 768391
  • 75 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676
  • 76 Kuehle J, Turan S, Cantz T et al. Modified lentiviral LTRs allow Flp recombinase-mediated cassette exchange and in vivo tracing of "factor-free" induced pluripotent stem cells. Mol Ther 2014; 22: 919-928
  • 77 Muller FJ, Laurent LC, Kostka D et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature 2008; 455: 401-405
  • 78 MacArthur BD, Sevilla A, Lenz M et al. Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity. Nature cell biology 2012; 14: 1139-1147
  • 79 Sinagoga KL, Wells JM. Generating human intestinal tissues from pluripotent stem cells to study development and disease. The EMBO journal 2015; 34: 1149-1163
  • 80 Forster R, Chiba K, Schaeffer L et al. Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells. Stem Cell Reports 2014; 2: 838-852
  • 81 Loh KM, Ang LT, Zhang J et al. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. Cell stem cell 2014; 14: 237-252
  • 82 Zampeli E, Gizis M, Siakavellas SI et al. Predictors of response to anti-tumor necrosis factor therapy in ulcerative colitis. World journal of gastrointestinal pathophysiology 2014; 5: 293-303
  • 83 Rodansky ES, Johnson LA, Huang S et al. Intestinal organoids: a model of intestinal fibrosis for evaluating anti-fibrotic drugs. Experimental and molecular pathology 2015; 98: 346-351
  • 84 Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell 2010; 140: 859-870
  • 85 Lupp C, Robertson ML, Wickham ME et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell host & microbe 2007; 2: 204
  • 86 Elson CO, Cong Y. Host-microbiota interactions in inflammatory bowel disease. Gut microbes 2012; 3: 332-344
  • 87 Leonard F, Collnot EM, Lehr CM. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro. Molecular pharmaceutics 2010; 7: 2103-2119
  • 88 Leonard F, Ali H, Collnot EM et al. Screening of budesonide nanoformulations for treatment of inflammatory bowel disease in an inflamed 3D cell-culture model. Altex 2012; 29: 275-285
  • 89 Yui S, Nakamura T, Sato T et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med 2012; 18: 618-623