Der Nuklearmediziner 2016; 39(04): 316-321
DOI: 10.1055/s-0042-113850
Neurobildgebung
© Georg Thieme Verlag KG Stuttgart · New York

PET und SPECT bei Epilepsie

PET and SPECT in Epilepsy
C. la Fougère
1   Abteilung Nuklearmedizin und Klinische Molekulare Bildgebung, Universitätsklinikum Tübingen, Tübingen
,
P. Bartenstein
2   Klinik und Poliklinik für Nuklearmedizin, Klinikum der Universität München, München
› Author Affiliations
Further Information

Publication History

Publication Date:
14 December 2016 (online)

Zusammenfassung

Molekulare Bildgebung mit SPECT und PET ermöglicht sowohl in der klinischen Routine als auch in der neurologischen Forschung eine metabolische Charakterisierung der Epilepsie, welche zum einem zu einer Verbesserung der diagnostischen Sicherheit und zum anderen zu einem besseren Verständnis über pathophysiologische und pathobiochemische Veränderungen führt. Im Rahmen dieser Arbeit soll der Stellenwert von SPECT und PET mit verschiedenen Radiopharmaka näher gebracht werden.

Abstract

Molecular imaging with SPECT and PET in epilepsy is considered to increase diagnostic accuracy for clinical routine and to enable a metabolic characterization of this disease by the visualizing pathophysiological and pathobiochemical changes. In this review the role of SPECT and PET with different radiotracers is discussed.

 
  • Literatur

  • 1 Ahnlide JA, Rosen I, Linden-Mickelsson Tech P et al. Does SISCOM contribute to favorable seizure outcome after epilepsy surgery?. Epilepsia 2007; 48: 579-588
  • 2 al-Tajir G, Starr MS. Anticonvulsant effect of striatal dopamine D2 receptor stimulation: dependence on cortical circuits?. Neuroscience 1991; 43: 51-57
  • 3 Arnold S, Schlaug G, Niemann H et al. Topography of interictal glucose hypometabolism in unilateral mesiotemporal epilepsy. Neurology 1996; 46: 1422-1430
  • 4 Bajorek JG, Lee RJ, Lomax P. Neuropeptides: anticonvulsant and convulsant mechanisms in epileptic model systems and in humans. Adv Neurol 1986; 44: 489-500
  • 5 Barone P, Palma V, DeBartolomeis A et al. Dopamine D1 and D2 receptors mediate opposite functions in seizures induced by lithium-pilocarpine. Eur J Pharmacol 1991; 195: 157-162
  • 6 Barrington SF, Koutroumanidis M, Agathonikou A et al. Clinical value of “ctal“ FDG-positron emission tomography and the routine use of simultaneous scalp EEG studies in patients with intractable partial epilepsies. Epilepsia 1998; 39: 753-766
  • 7 Bartenstein PA, Duncan JS, Prevett MC et al. Investigation of the opioid system in absence seizures with positron emission tomography. J Neurol Neurosurg Psychiatry 1993; 56: 1295-1302
  • 8 Bartenstein PA, Prevett MC, Duncan JS et al. Quantification of opiate receptors in two patients with mesiobasal temporal lobe epilepsy, before and after selective amygdalohippocampectomy, using positron emission tomography. Epilepsy Res 1994; 18: 119-125
  • 9 Benardo LS, Prince DA. Dopamine modulates a Ca2+-activated potassium conductance in mammalian hippocampal pyramidal cells. Nature 1982; 297: 76-79
  • 10 Bozzi Y, Vallone D, Borrelli E. Neuroprotective role of dopamine against hippocampal cell death. J Neurosci 2000; 20: 8643-8649
  • 11 Catafau AM. Brain SPECT in clinical practice. Part I: perfusion. J Nucl Med 2001; 42: 259-271
  • 12 de Jong HW, van Velden FH, Kloet RW et al. Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol 2007; 52: 1505-1526
  • 13 Devous Sr. MD, Thisted RA, Morgan GF et al. SPECT brain imaging in epilepsy: a meta-analysis. J Nucl Med 1998; 39: 285-293
  • 14 Didelot A, Ryvlin P, Lothe A et al. PET imaging of brain 5-HT1A receptors in the preoperative evaluation of temporal lobe epilepsy. Brain 2008
  • 15 Drzezga A, Arnold S, Minoshima S et al. 18F-FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med 1999; 40: 737-746
  • 16 Duncan JS. Positron emission tomography receptor studies. Adv Neurol 1999; 79: 893-899
  • 17 Engel Jr J. Introduction to temporal lobe epilepsy. Epilepsy Res 1996; 26: 141-150
  • 18 Frost JJ, Mayberg HS, Fisher RS et al. Mu-opiate receptors measured by positron emission tomography are increased in temporal lobe epilepsy. Ann Neurol 1988; 23: 231-237
  • 19 Gambhir S, Singh Sethi R, Deswal S. Incidental detection of a single brain metastasis from breast carcinoma during Tc-99 m MIBI scintimammography. Clin Nucl Med 2001; 26: 883-884
  • 20 Hammers A, Asselin MC, Hinz R et al. Upregulation of opioid receptor binding following spontaneous epileptic seizures. Brain 2007; 130: 1009-1016
  • 21 Hammers A, Koepp MJ, Richardson MP et al. Central benzodiazepine receptors in malformations of cortical development: A quantitative study. Brain 2001; 124: 1555-1565
  • 22 Henriksen G, Willoch F. Imaging of opioid receptors in the central nervous system. Brain 2008; 131: 1171-1196
  • 23 Juhasz C, Chugani DC, Muzik O et al. Relationship of flumazenil and glucose PET abnormalities to neocortical epilepsy surgery outcome. Neurology 2001; 56: 1650-1658
  • 24 Kaiboriboon K, Lowe VJ, Chantarujikapong SI et al. The usefulness of subtraction ictal SPECT coregistered to MRI in single- and dual-headed SPECT cameras in partial epilepsy. Epilepsia 2002; 43: 408-414
  • 25 Kaneko K, Sasaki M, Morioka T et al. Pre-surgical identification of epileptogenic areas in temporal lobe epilepsy by 123I-iomazenil SPECT: a comparison with IMP SPECT and FDG PET. Nucl Med Commun 2006; 27: 893-899
  • 26 Koepp MJ, Hammers A, Labbe C et al. 11C-flumazenil PET in patients with refractory temporal lobe epilepsy and normal MRI. Neurology 2000; 54: 332-339
  • 27 Koepp MJ, Labbe C, Richardson MP et al. Regional hippocampal [11C]flumazenil PET in temporal lobe epilepsy with unilateral and bilateral hippocampal sclerosis. Brain 1997; 120 Pt 10 1865-1876
  • 28 Koepp MJ, Richardson MP, Brooks DJ et al. Central benzodiazepine/gamma-aminobutyric acid A receptors in idiopathic generalized epilepsy: an [11C]flumazenil positron emission tomography study. Epilepsia 1997; 38: 1089-1097
  • 29 Koepp MJ, Richardson MP, Brooks DJ et al. Focal cortical release of endogenous opioids during reading-induced seizures. Lancet 1998; 352: 952-955
  • 30 Lee JJ, Lee SK, Lee SY et al. Frontal lobe epilepsy: clinical characteristics, surgical outcomes and diagnostic modalities. Seizure 2008; 17: 514-523
  • 31 Madar I, Lesser RP, Krauss G et al. Imaging of delta- and mu-opioid receptors in temporal lobe epilepsy by positron emission tomography. Ann Neurol 1997; 41: 358-367
  • 32 Mayberg HS, Sadzot B, Meltzer CC et al. Quantification of mu and non-mu opiate receptors in temporal lobe epilepsy using positron emission tomography. Ann Neurol 1991; 30: 3-11
  • 33 Merlet I, Ostrowsky K, Costes N et al. 5-HT1A receptor binding and intracerebral activity in temporal lobe epilepsy: an [18F]MPPF-PET study. Brain 2004; 127: 900-913
  • 34 Merlet I, Ryvlin P, Costes N et al. Statistical parametric mapping of 5-HT1A receptor binding in temporal lobe epilepsy with hippocampal ictal onset on intracranial EEG. Neuroimage 2004; 22: 886-896
  • 35 Muzik O, da Silva EA, Juhasz C et al. Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy. Neurology 2000; 54: 171-179
  • 36 Neirinckx RD, Canning LR, Piper IM et al. Technetium-99 m d,l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 1987; 28: 191-202
  • 37 Newton MR, Berkovic SF, Austin MC et al. Postictal switch in blood flow distribution and temporal lobe seizures. J Neurol Neurosurg Psychiatry 1992; 55: 891-894
  • 38 Nishizawa S, Tanada S, Yonekura Y et al. Regional dynamics of N-isopropyl-(123I)p-iodoamphetamine in human brain. J Nucl Med 1989; 30: 150-156
  • 39 O’Brien TJ. SPECT: methodology. Adv Neurol 2000; 83: 11-32
  • 40 O’Brien TJ, So EL, Cascino GD et al. Subtraction SPECT coregistered to MRI in focal malformations of cortical development: localization of the epileptogenic zone in epilepsy surgery candidates. Epilepsia 2004; 45: 367-376
  • 41 O’Brien TJ, So EL, Mullan BP et al. Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 1998; 50: 445-454
  • 42 O’Brien TJ, So EL, Mullan BP et al. Subtraction peri-ictal SPECT is predictive of extratemporal epilepsy surgery outcome. Neurology 2000; 55: 1668-1677
  • 43 Ryvlin P, Bouvard S, Le Bars D et al. Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients. Brain 1998; 121 Pt 11 2067-2081
  • 44 Ryzhikov NN, Seneca N, Krasikova RN et al. Preparation of highly specific radioactivity [18F]flumazenil and its evaluation in cynomolgus monkey by positron emission tomography. Nucl Med Biol 2005; 32: 109-116
  • 45 Savic I, Pauli S, Thorell JO et al. In vivo demonstration of altered benzodiazepine receptor density in patients with generalised epilepsy. J Neurol Neurosurg Psychiatry 1994; 57: 797-804
  • 46 Savic I, Persson A, Roland P et al. In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 1988; 2: 863-866
  • 47 Savic I, Svanborg E, Thorell JO. Cortical benzodiazepine receptor changes are related to frequency of partial seizures: a positron emission tomography study. Epilepsia 1996; 37: 236-244
  • 48 Savic I, Thorell JO, Roland P. [11C]flumazenil positron emission tomography visualizes frontal epileptogenic regions. Epilepsia 1995; 36: 1225-1232
  • 49 Savic I, Widen L, Thorell JO et al. Cortical benzodiazepine receptor binding in patients with generalized and partial epilepsy. Epilepsia 1990; 31: 724-730
  • 50 Spanaki MV, Spencer SS, Corsi M et al. Sensitivity and specificity of quantitative difference SPECT analysis in seizure localization. J Nucl Med 1999; 40: 730-736
  • 51 Theodore WH, Carson RE, Andreasen P et al. PET imaging of opiate receptor binding in human epilepsy using [18F]cyclofoxy. Epilepsy Res 1992; 13: 129-139
  • 52 Van Paesschen W. Ictal SPECT. Epilepsia 2004; 45 (Suppl. 04) 35-40
  • 53 Van Paesschen W, Dupont P, Sunaert S et al. The use of SPECT and PET in routine clinical practice in epilepsy. Curr Opin Neurol 2007; 20: 194-202
  • 54 Weil S, Noachtar S, Arnold S et al. Ictal ECD-SPECT differentiates between temporal and extratemporal epilepsy: confirmation by excellent postoperative seizure control. Nucl Med Commun 2001; 22: 233-237
  • 55 Werhahn KJ, Landvogt C, Klimpe S et al. Decreased dopamine D2/D3-receptor binding in temporal lobe epilepsy: an [18F]fallypride PET study. Epilepsia 2006; 47: 1392-1396
  • 56 Wichert-Ana L, de Azevedo-Marques PM, Oliveira LF et al. Interictal hyperemia correlates with epileptogenicity in polymicrogyric cortex. Epilepsy Res 2008; 79: 39-48
  • 57 Won HJ, Chang KH, Cheon JE et al. Comparison of MR imaging with PET and ictal SPECT in 118 patients with intractable epilepsy. AJNR Am J Neuroradiol 1999; 20: 593-599
  • 58 Zaknun JJ, Bal C, Maes A et al. Comparative analysis of MR imaging, Ictal SPECT and EEG in temporal lobe epilepsy: a prospective IAEA multi-center study. Eur J Nucl Med Mol Imaging 2008; 35: 107-115