Transfusionsmedizin 2017; 7(01): 40-58
DOI: 10.1055/s-0042-123247
CME-Fortbildung
Georg Thieme Verlag KG Stuttgart · New York

Immunmodulation durch Transfusion von Erythrozytenkonzentraten

Malte Ziemann
,
Lothar Rink
,
Thomas Frietsch
,
Michael Spannagl
,
Ulrich Schuler
Further Information

Publication History

Publication Date:
13 March 2017 (online)

Kernaussagen
  • Die Grundlage, einen Zusammenhang zwischen Bluttransfusionen und nachteiligem klinischen Outcome anzunehmen, sind Beobachtungsstudien. Da es unmöglich ist, alle Störvariablen zu kontrollieren, ist die Aussagekraft dieser Studien allerdings eingeschränkt. So kann ein schlechteres Outcome in Beobachtungsstudien immer durch eine schwerere Erkrankung oder einen schlechteren Verlauf und nicht durch die Transfusionen verursacht worden sein.

  • In den meisten randomisierten Studien mit leukozytendepletierten Produkten konnte kein Einfluss der Transfusionsstrategie auf das Outcome nachgewiesen werden. Falls keine kontrollierte Volumentherapie durchgeführt wurde, kann eine erhöhte Morbidität liberal transfundierter Patienten nicht nur durch immunologische Wirkungen der Transfusion, sondern auch durch das zusätzlich applizierte Volumen bedingt sein.

  • Der fehlende Nachweis eines verschlechterten Outcomes in randomisierten Studien schließt allerdings eine mögliche Immunmodulation durch die Transfusion nicht völlig aus: Zum einen könnten die Effekte je nach Patientenkollektiv differieren, sodass sie schwer in großen Studien zu erfassen sind. Auf der anderen Seite führt die Gabe von Erythrozyten natürlich auch zu günstigen Effekten. Ein gleichbleibender globaler Outcome-Parameter kann daher auch bedeuten, dass sich Einflüsse einer EK-Transfusion im Gesamtkollektiv ausgleichen.

  • Ziel zukünftiger Studien könnte daher sein, die Patienten zu identifizieren, die am ehesten von einer Transfusion profitieren. Dabei ist eine kontrollierte Volumentherapie ein wichtiger Bestandteil des Studiendesigns, um mögliche immunologische Effekte von reinen Volumenwirkungen abgrenzen zu können.

  • Zurzeit ist eine generelle Beeinflussung von Morbidität bzw. Mortalität durch die Transfusion von EK nicht belegt.

 
  • Literatur

  • 1 Halasz NA, Orloff MJ, Hirose F. Increased survival of renal homografts in dogs after injection of graft donor blood. Transplantation 1964; 2: 453-458
  • 2 Dossetor JB, MacKinnon KJ, Gault MH. et al. Cadaver kidney transplants. Transplantation 1967; 5 (Suppl. 04) 844-853
  • 3 Opelz G, Terasaki PI. Poor kidney-transplant survival in recipients with frozen-blood transfusions or no transfusions. Lancet 1974; 2 (7882) 696-698
  • 4 Gantt CL. Red blood cells for cancer patients. Lancet 1981; 2 (8242) 363
  • 5 Burrows L, Tartter P. Effect of blood transfusions on colonic malignancy recurrent rate. Lancet 1982; 2 (8299) 662
  • 6 Scornik JC, Bromberg JS, Norman DJ. et al. An update on the impact of pre-transplant transfusions and allosensitization on time to renal transplant and on allograft survival. BMC Nephrol 2013; 14: 217
  • 7 Rink L, Kruse A, Haase H. Immunologie für Einsteiger. 2. Aufl.. Heidelberg: Spektrum Akademischer Verlag; 2015
  • 8 Schonewille H, Brand A. Does an alloimmune response to strong immunogenic red blood cell antigens enhance a response to weaker antigens?. Transfusion 2008; 48: 958-963
  • 9 Rapido F, Brittenham GM, Bandyopadhyay S. et al. Prolonged red cell storage before transfusion increases extravascular hemolysis. J Clin Invest 2017; 127: 375-382
  • 10 Kor DJ, Kashyap R, Weiskopf RB. et al. Fresh red blood cell transfusion and short-term pulmonary, immunologic, and coagulation status: a randomized clinical trial. Am J Respir Crit Care Med 2012; 185: 842-850
  • 11 Lacroix J, Hébert PC, Fergusson DA. et al. Age of transfused blood in critically ill adults. N Engl J Med 2015; 372: 1410-1418
  • 12 Hendrickson JE, Hod EA, Hudson KE. et al. Transfusion of fresh murine red blood cells reverses adverse effects of older stored red blood cells. Transfusion 2011; 51: 2695-2702
  • 13 Muszynski JA, Frazier E, Nofziger R. et al. Red blood cell transfusion and immune function in critically ill children: a prospective observational study. Transfusion 2015; 55: 766-774
  • 14 Danzer SG, A Campo C. Kunze B. et al. Identification of HLA-DRB1 and HLA-DQB1 identical individuals by a cytokine-based mixed lymphocyte culture. Lymphokine Cytokine Res 1994; 13: 303-308
  • 15 Danzer SG, Kirchner H, Rink L. Cytokine interactions in human mixed lymphocyte culture. Transplantation 1994; 57: 1638-1642
  • 16 Ferrandiz I, Congy-Jolivet N, Del Bello A. et al. Impact of Early Blood Transfusion After Kidney Transplantation on the Incidence of Donor-Specific Anti-HLA Antibodies. Am J Transplant 2016; 16: 2661-2669
  • 17 Kopolovic I, Ostro J, Tsubota H. et al. A systematic review of transfusion-associated graft-versus-host disease. Blood 2015; 126: 406-414
  • 18 Pritchard AE, Shaz BH. Survey of Irradiation Practice for the Prevention of Transfusion-Associated Graft-versus-Host Disease. Arch Pathol Lab Med 2016; 140: 1092-1097
  • 19 Nielsen HJ, Reimert CM, Pedersen AN. et al. Time-dependent, spontaneous release of white cell- and platelet-derived bioactive substances from stored human blood. Transfusion 1996; 36: 960-965
  • 20 Hart S, Cserti-Gazdewich CN, McCluskey SA. Red cell transfusion and the immune system. Anaesthesia 2015; 70: 38-45 e13–16
  • 21 Heddle NM. Pathophysiology of febrile nonhemolytic transfusion reactions. Curr Opin Hematol 1999; 6: 420-426
  • 22 Lin JS, Tzeng CH, Hao TC. et al. Cytokine release in febrile non-haemolytic red cell transfusion reactions. Vox Sang 2002; 82: 156-160
  • 23 Vamvakas EC, Blajchman MA. Transfusion-related immunomodulation (TRIM): an update. Blood Rev 2007; 21: 327-348
  • 24 Buttari B, Profumo E, Petrone L. et al. Free hemoglobin: a dangerous signal for the immune system in patients with carotid atherosclerosis?. Ann N Y Acad Sci 2007; 1107: 42-50
  • 25 Lee TH, Paglieroni T, Utter GH. et al. High-level long-term white blood cell microchimerism after transfusion of leukoreduced blood components to patients resuscitated after severe traumatic injury. Transfusion 2005; 45: 1280-1290
  • 26 Nelson JL. The otherness of self: microchimerism in health and disease. Trends Immunol 2012; 33: 421-427
  • 27 Steiner ME, Ness PM, Assmann SF. et al. Effects of red-cell storage duration on patients undergoing cardiac surgery. N Engl J Med 2015; 372: 1419-1429
  • 28 Heddle NM, Cook RJ, Arnold DM. et al. Effect of Short-Term vs. Long-Term Blood Storage on Mortality after Transfusion. N Engl J Med 2016; 375: 1937-1945
  • 29 Alexander PE, Barty R, Fei Y. et al. Transfusion of fresher vs. older red blood cells in hospitalized patients: a systematic review and meta-analysis. Blood 2016; 127: 400-410
  • 30 Vamvakas EC, Carven JH, Hibberd PL. Blood transfusion and infection after colorectal cancer surgery. Transfusion 1996; 36: 1000-1008
  • 31 Kuss O, Blettner M, Börgermann J. Propensity Score: an Alternative Method of Analyzing Treatment Effects. Dtsch Arztebl Int 2016; 113: 597-603
  • 32 Cata JP, Gutierrez C, Mehran RJ. et al. Preoperative anemia, blood transfusion, and neutrophil-to-lymphocyte ratio in patients with stage i non-small cell lung cancer. Cancer Cell Microenviron 2016; 3: e1116
  • 33 Cui J, Deng J, Ding X. et al. Blood transfusion does not affect survival of gastric cancer patients. J Surg Res 2016; 200: 98-104
  • 34 Kato S, Chikuda H, Ohya J. et al. Risk of infectious complications associated with blood transfusion in elective spinal surgery-a propensity score matched analysis. Spine J 2016; 16: 55-60
  • 35 Müller SA, Mehrabi A, Rahbari NN. et al. Allogeneic blood transfusion does not affect outcome after curative resection for advanced cholangiocarcinoma. Ann Surg Oncol 2014; 21: 155-164
  • 36 Park YH, Kim YJ, Kang SH. et al. Association between Perioperative Blood Transfusion and Oncologic Outcomes after Curative Surgery for Renal Cell Carcinoma. J Cancer 2016; 7: 965-972
  • 37 Reim D, Strobl AN, Buchner C. et al. Perioperative transfusion of leukocyte depleted blood products in gastric cancer patients negatively influences oncologic outcome: A retrospective propensity score weighted analysis on 610 curatively resected gastric cancer patients. Medicine (Baltimore) 2016; 95: e4322
  • 38 Shaw RE, Johnson CK, Ferrari G. et al. Balancing the benefits and risks of blood transfusions in patients undergoing cardiac surgery: a propensity-matched analysis. Interact Cardiovasc Thorac Surg 2013; 17: 96-102
  • 39 Tarantino I, Ukegjini K, Warschkow R. et al. Blood transfusion does not adversely affect survival after elective colon cancer resection: a propensity score analysis. Langenbecks Arch Surg 2013; 398: 841-849
  • 40 Warschkow R, Güller U, Köberle D. et al. Perioperative blood transfusions do not impact overall and disease-free survival after curative rectal cancer resection: a propensity score analysis. Ann Surg 2014; 259: 131-138
  • 41 Yang T, Lu JH, Lau WY. et al. Perioperative blood transfusion does not influence recurrence-free and overall survivals after curative resection for hepatocellular carcinoma: A Propensity Score Matching Analysis. J Hepatol 2016; 64: 583-593
  • 42 Glance LG, Dick AW, Mukamel DB. et al. Association between intraoperative blood transfusion and mortality and morbidity in patients undergoing noncardiac surgery. Anesthesiology 2011; 114: 283-292
  • 43 Glance LG, Mukamel DB, Blumberg N. et al. Association between surgical resident involvement and blood use in noncardiac surgery. Transfusion 2014; 54: 691-700
  • 44 Marik PE, Corwin HL. Efficacy of red blood cell transfusion in the critically ill: a systematic review of the literature. Crit Care Med 2008; 36: 2667-2674
  • 45 Chatterjee S, Wetterslev J, Sharma A. et al. Association of blood transfusion with increased mortality in myocardial infarction: a meta-analysis and diversity-adjusted study sequential analysis. JAMA Intern Med 2013; 173: 132-139
  • 46 Patel NN, Avlonitis VS, Jones HE. et al. Indications for red blood cell transfusion in cardiac surgery: a systematic review and meta-analysis. Lancet Haematol 2015; 2: e543-e553
  • 47 Hopewell S, Omar O, Hyde C. et al. A systematic review of the effect of red blood cell transfusion on mortality: evidence from large-scale observational studies published between 2006 and 2010. BMJ Open 2013; 3: pii:e002154
  • 48 Muszynski JA, Spinella PC, Cholette JM. et al. Transfusion-related immunomodulation: review of the literature and implications for pediatric critical illness. Transfusion 2017; 57: 195-206
  • 49 Jensen LS, Andersen AJ, Christiansen PM. et al. Postoperative infection and natural killer cell function following blood transfusion in patients undergoing elective colorectal surgery. Br J Surg 1992; 79: 513-516
  • 50 Bilgin YM, van de Watering LM, Versteegh MI. et al. Effects of allogeneic leukocytes in blood transfusions during cardiac surgery on inflammatory mediators and postoperative complications. Crit Care Med 2010; 38: 546-552
  • 51 Theodoraki K, Markatou M, Rizos D. et al. The impact of two different transfusion strategies on patient immune response during major abdominal surgery: a preliminary report. J Immunol Res 2014; 2014: 945829
  • 52 Luan H, Ye F, Wu L. et al. Perioperative blood transfusion adversely affects prognosis after resection of lung cancer: a systematic review and a meta-analysis. BMC Surg 2014; 14: 34
  • 53 Wang YL, Jiang B, Yin FF. et al. Perioperative Blood Transfusion Promotes Worse Outcomes of Bladder Cancer after Radical Cystectomy: A Systematic Review and Meta-Analysis. PLoS One 2015; 10: e0130122
  • 54 Chalfin HJ, Frank SM, Feng Z. et al. Allogeneic versus autologous blood transfusion and survival after radical prostatectomy. Transfusion 2014; 54: 2168-2174
  • 55 Zaw AS, Kantharajanna SB, Maharajan K. et al. Perioperative blood transfusion: does it influence survival and cancer progression in metastatic spine tumor surgery?. Transfusion 2016; DOI: 10.1111/trf.13912.
  • 56 Grover M, Talwalkar S, Casbard A. et al. Silent myocardial ischaemia and haemoglobin concentration: a randomized controlled trial of transfusion strategy in lower limb arthroplasty. Vox Sang 2006; 90: 105-112
  • 57 Lacroix J, Hébert PC, Hutchison JS. et al. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med 2007; 356: 1609-1619
  • 58 Rouette J, Trottier H, Ducruet T. et al. Red blood cell transfusion threshold in postsurgical pediatric intensive care patients: a randomized clinical trial. Ann Surg 2010; 251: 421-427
  • 59 Willems A, Harrington K, Lacroix J. et al. Comparison of two red-cell transfusion strategies after pediatric cardiac surgery: a subgroup analysis. Crit Care Med 2010; 38: 649-656
  • 60 Karam O, Tucci M, Ducruet T. et al. Red blood cell transfusion thresholds in pediatric patients with sepsis. Pediatr Crit Care Med 2011; 12: 512-518
  • 61 Webert KE, Cook RJ, Couban S. et al. A multicenter pilot-randomized controlled trial of the feasibility of an augmented red blood cell transfusion strategy for patients treated with induction chemotherapy for acute leukemia or stem cell transplantation. Transfusion 2008; 48: 81-91
  • 62 Naidech AM, Shaibani A, Garg RK. et al. Prospective, randomized trial of higher goal hemoglobin after subarachnoid hemorrhage. Neurocrit Care 2010; 13: 313-320
  • 63 Carson JL, Sieber F, Cook DR. et al. Liberal versus restrictive blood transfusion strategy: 3-year survival and cause of death results from the FOCUS randomised controlled trial. Lancet 2015; 385 (9974) 1183-1189
  • 64 Carson JL, Terrin ML, Noveck H. et al. Liberal or restrictive transfusion in high-risk patients after hip surgery. N Engl J Med 2011; 365: 2453-2462
  • 65 Cholette JM, Rubenstein JS, Alfieris GM. et al. Children with single-ventricle physiology do not benefit from higher hemoglobin levels post cavopulmonary connection: results of a prospective, randomized, controlled trial of a restrictive versus liberal red-cell transfusion strategy. Pediatr Crit Care Med 2011; 12: 39-45
  • 66 Cooper HA, Rao SV, Greenberg MD. et al. Conservative versus liberal red cell transfusion in acute myocardial infarction (the CRIT Randomized Pilot Study). Am J Cardiol 2011; 108: 1108-1111
  • 67 Shehata N, Burns LA, Nathan H. et al. A randomized controlled pilot study of adherence to transfusion strategies in cardiac surgery. Transfusion 2012; 52: 91-99
  • 68 Carson JL, Brooks MM, Abbott JD. et al. Liberal versus restrictive transfusion thresholds for patients with symptomatic coronary artery disease. Am Heart J 2013; 165: 964.e1-971.e1
  • 69 de Gast-Bakker DH, de Wilde RBP, Hazekamp MG. et al. Safety and effects of two red blood cell transfusion strategies in pediatric cardiac surgery patients: a randomized controlled trial. Intensive Care Med 2013; 39: 2011-2019
  • 70 Parker MJ. Randomised trial of blood transfusion versus a restrictive transfusion policy after hip fracture surgery. Injury 2013; 44: 1916-1918
  • 71 Villanueva C, Colomo A, Bosch A. et al. Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med 2013; 368: 11-21
  • 72 Walsh TS, Boyd JA, Watson D. et al. Restrictive versus liberal transfusion strategies for older mechanically ventilated critically ill patients: a randomized pilot trial. Crit Care Med 2013; 41: 2354-2363
  • 73 Jiwaji Z, Nunn KP, Conway-Morris A. et al. Leukoreduced blood transfusion does not increase circulating soluble markers of inflammation: a randomized controlled trial. Transfusion 2014; 54: 2404-2411
  • 74 Nielsen K, Johansson PI, Dahl B. et al. Perioperative transfusion threshold and ambulation after hip revision surgery – a randomized trial. BMC Anesthesiol 2014; 14: 89
  • 75 Prick BW, Jansen AJ, Steegers EA. et al. Transfusion policy after severe postpartum haemorrhage: a randomised non-inferiority trial. BJOG 2014; 121: 1005-1014
  • 76 Prick BW, Steegers EAP, Jansen AJG. et al. Well being of obstetric patients on minimal blood transfusions (WOMB trial). BMC Pregnancy Childbirth 2010; 10: 83
  • 77 Holst LB, Haase N, Wetterslev J. et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med 2014; 371: 1381-1391
  • 78 Rygård SL, Holst LB, Wetterslev J. et al. Long-term outcomes in patients with septic shock transfused at a lower versus a higher haemoglobin threshold: the TRISS randomised, multicentre clinical trial. Intensive Care Med 2016; 42: 1685-1694
  • 79 de Almeida JP, Vincent JL, Galas FR. et al. Transfusion requirements in surgical oncology patients: a prospective, randomized controlled trial. Anesthesiology 2015; 122: 29-38
  • 80 Gregersen M, Borris LC, Damsgaard EM. Postoperative blood transfusion strategy in frail, anemic elderly patients with hip fracture: the TRIFE randomized controlled trial. Acta Orthop 2015; 86: 363-372
  • 81 Gregersen M, Damsgaard EM, Borris LC. Blood transfusion and risk of infection in frail elderly after hip fracture surgery: the TRIFE randomized controlled trial. Eur J Orthop Surg Traumatol 2015; 25: 1031-1038
  • 82 Gregersen M, Borris LC, Damsgaard EM. Blood transfusion and overall quality of life after hip fracture in frail elderly patients—the transfusion requirements in frail elderly randomized controlled trial. J Am Med Dir Assoc 2015; 16: 762-766
  • 83 Blandfort S, Gregersen M, Borris LC. et al. Blood transfusion strategy and risk of postoperative delirium in nursing homes residents with hip fracture. A post hoc analysis based on the TRIFE randomized controlled trial. Aging Clin Exp Res 2016; DOI: 10.1007/s40520-016-0587-5.
  • 84 Murphy GJ, Pike K, Rogers CA. et al. Liberal or restrictive transfusion after cardiac surgery. N Engl J Med 2015; 372: 997-1008
  • 85 Reeves BC, Pike K, Rogers CA. et al. A multicentre randomised controlled trial of Transfusion Indication Threshold Reduction on transfusion rates, morbidity and health-care resource use following cardiac surgery (TITRe2). Health Technol Assess 2016; 20: 1-260
  • 86 Stokes EA, Wordsworth S, Bargo D. et al. Are lower levels of red blood cell transfusion more cost-effective than liberal levels after cardiac surgery? Findings from the TITRe2 randomised controlled trial. BMJ Open 2016; 6: e011311
  • 87 Robertson CS, Hannay HJ, Yamal JM. et al. Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial. JAMA 2014; 312: 36-47
  • 88 Yamal JM, Rubin ML, Benoit JS. et al. Effect of Hemoglobin Transfusion Threshold on Cerebral Hemodynamics and Oxygenation. J Neurotrauma 2015; 32: 1239-1245
  • 89 Vedantam A, Yamal JM, Rubin ML. et al. Progressive hemorrhagic injury after severe traumatic brain injury: effect of hemoglobin transfusion thresholds. J Neurosurg 2016; 125: 1229-1234
  • 90 Jairath V, Kahan BC, Gray A. et al. Restrictive versus liberal blood transfusion for acute upper gastrointestinal bleeding (TRIGGER): a pragmatic, open-label, cluster randomised feasibility trial. Lancet 2015; 386 (9989) 137-144
  • 91 Jairath V, Kahan BC, Gray A. et al. Restrictive vs. liberal blood transfusion for acute upper gastrointestinal bleeding: rationale and protocol for a cluster randomized feasibility trial. Transfus Med Rev 2013; 27: 146-153
  • 92 DeZern AE, Williams K, Zahurak M. et al. Red blood cell transfusion triggers in acute leukemia: a randomized pilot study. Transfusion 2016; 56: 1750-1757
  • 93 Cholette JM, Swartz MF, Rubenstein J. et al. Outcomes Using a Conservative Versus Liberal Red Blood Cell Transfusion Strategy in Infants Requiring Cardiac Operation. Ann Thorac Surg 2017; 103: 206-214
  • 94 Carson JL, Carless PA, Hebert PC. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev 2012; (04) CD002042
  • 95 Salpeter SR, Buckley JS, Chatterjee S. Impact of more restrictive blood transfusion strategies on clinical outcomes: a meta-analysis and systematic review. Am J Med 2014; 127: 124.e3-131.e3
  • 96 Curley GF, Shehata N, Mazer CD. et al. Transfusion triggers for guiding RBC transfusion for cardiovascular surgery: a systematic review and meta-analysis. Crit Care Med 2014; 42: 2611-2624
  • 97 Holst LB, Petersen MW, Haase N. et al. Restrictive versus liberal transfusion strategy for red blood cell transfusion: systematic review of randomised trials with meta-analysis and trial sequential analysis. BMJ 2015; 350: h1354
  • 98 Morrison CA, Carrick MM, Norman MA. et al. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma 2011; 70: 652-663
  • 99 Rohde JM, Dimcheff DE, Blumberg N. et al. Health care-associated infection after red blood cell transfusion. JAMA 2014; 311: 1317-1326
  • 100 Brunskill SJ, Millette SL, Shokoohi A. et al. Red blood cell transfusion for people undergoing hip fracture surgery. Cochrane Database Syst Rev 2015; (04) CD009699
  • 101 Teng Z, Zhu Y, Liu Y. et al. Restrictive blood transfusion strategies and associated infection in orthopedic patients: a meta-analysis of 8 randomized controlled trials. Sci Rep 2015; 5: 13421
  • 102 Carson JL, Stanworth SJ, Roubinian N. et al. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev 2016; (10) CD002042
  • 103 Hovaguimian F, Myles PS. Restrictive versus Liberal Transfusion Strategy in the Perioperative and Acute Care Settings: A Context-specific Systematic Review and Meta-analysis of Randomized Controlled Trials. Anesthesiology 2016; 125: 46-61
  • 104 Rogers MAM. Red Blood Cell Transfusion Strategies and Health Care-Associated Infection – Reply. JAMA 2014; 312: 2042-2043
  • 105 So-Osman C, Nelissen R, Te Slaa R. et al. A randomized comparison of transfusion triggers in elective orthopaedic surgery using leucocyte-depleted red blood cells. Vox Sang 2010; 98: 56-64
  • 106 Hébert PC, Wells G, Blajchman MA. et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med 1999; 340: 409-417
  • 107 Gruber-Baldini AL, Marcantonio E, Orwig D. et al. Delirium outcomes in a randomized trial of blood transfusion thresholds among hospitalized older patients with hip fracture. J Am Geriatr Soc 2013; 61: 1286-1295