Semin Respir Crit Care Med 2022; 43(05): 613-626
DOI: 10.1055/s-0042-1743289
Review Article

Imaging in Asthma Management

Peter J. Niedbalski
1   Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
,
Jiwoong Choi
1   Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
,
Chase S. Hall
1   Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
,
Mario Castro
1   Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
› Author Affiliations

Abstract

Asthma is a heterogeneous disease characterized by chronic airway inflammation that affects more than 300 million people worldwide. Clinically, asthma has a widely variable presentation and is defined based on a history of respiratory symptoms alongside airflow limitation. Imaging is not needed to confirm a diagnosis of asthma, and thus the use of imaging in asthma has historically been limited to excluding alternative diagnoses. However, significant advances continue to be made in novel imaging methodologies, which have been increasingly used to better understand respiratory impairment in asthma. As a disease primarily impacting the airways, asthma is best understood by imaging methods with the ability to elucidate airway impairment. Techniques such as computed tomography, magnetic resonance imaging with gaseous contrast agents, and positron emission tomography enable assessment of the small airways. Others, such as optical coherence tomography and endobronchial ultrasound enable high-resolution imaging of the large airways accessible to bronchoscopy. These imaging techniques are providing new insights in the pathophysiology and treatments of asthma and are poised to impact the clinical management of asthma.



Publication History

Article published online:
24 February 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Kuruvilla ME, Lee FE-H, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol 2019; 56 (02) 219-233
  • 2 Richards JC, Lynch D, Koelsch T, Dyer D. Imaging of asthma. Immunol Allergy Clin North Am 2016; 36 (03) 529-545
  • 3 Narayanan S, Magruder T, Walley SC, Powers T, Wall TC. Relevance of chest radiography in pediatric inpatients with asthma. J Asthma 2014; 51 (07) 751-755
  • 4 Reed MH. Imaging utilization commentary: a radiology perspective. Pediatr Radiol 2008; 38 (Suppl. 04) S660-S663
  • 5 Gentile NT, Ufberg J, Barnum M, McHugh M, Karras D. Guidelines reduce X-ray and blood gas utilization in acute asthma. Am J Emerg Med 2003; 21 (06) 451-453
  • 6 Parikh K, Hall M, Mittal V. et al. Establishing benchmarks for the hospitalized care of children with asthma, bronchiolitis, and pneumonia. Pediatrics 2014; 134 (03) 555-562
  • 7 Walker C, Gupta S, Hartley R, Brightling CE. Computed tomography scans in severe asthma: utility and clinical implications. Curr Opin Pulm Med 2012; 18 (01) 42-47
  • 8 Gupta S, Siddiqui S, Haldar P. et al. Qualitative analysis of high-resolution CT scans in severe asthma. Chest 2009; 136 (06) 1521-1528
  • 9 Sieren JP, Newell Jr JD, Barr RG. et al; SPIROMICS Research Group. SPIROMICS protocol for multicenter quantitative computed tomography to phenotype the lungs. Am J Respir Crit Care Med 2016; 194 (07) 794-806
  • 10 Maldjian PD, Goldman AR. Reducing radiation dose in body CT: a primer on dose metrics and key CT technical parameters. AJR Am J Roentgenol 2013; 200 (04) 741-747
  • 11 Niimi A, Matsumoto H, Amitani R. et al. Effect of short-term treatment with inhaled corticosteroid on airway wall thickening in asthma. Am J Med 2004; 116 (11) 725-731
  • 12 Kurashima K, Kanauchi T, Hoshi T. et al. Effect of early versus late intervention with inhaled corticosteroids on airway wall thickness in patients with asthma. Respirology 2008; 13 (07) 1008-1013
  • 13 Grenier PA, Fetita CI, Brillet P-Y. Quantitative computed tomography imaging of airway remodeling in severe asthma. Quant Imaging Med Surg 2016; 6 (01) 76-83
  • 14 Cheng G, Wu X, Xiang W, Guo C, Ji H, He L. Segmentation of the airway tree from chest CT using tiny atrous convolutional. IEEE Netw 2021; 9: 33583
  • 15 Little SA, Sproule MW, Cowan MD. et al. High resolution computed tomographic assessment of airway wall thickness in chronic asthma: reproducibility and relationship with lung function and severity. Thorax 2002; 57 (03) 247-253
  • 16 Patyk M, Obojski A, Sokołowska-Dąbek D, Parkitna-Patyk M, Zaleska-Dorobisz U. Airway wall thickness and airflow limitations in asthma assessed in quantitative computed tomography. Ther Adv Respir Dis 2020; 14: 1753466619898598
  • 17 Dunican EM, Elicker BM, Gierada DS. et al; National Heart Lung and Blood Institute (NHLBI) Severe Asthma Research Program (SARP). Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J Clin Invest 2018; 128 (03) 997-1009
  • 18 Choi S, Hoffman EA, Wenzel SE. et al. Quantitative assessment of multiscale structural and functional alterations in asthmatic populations. J Appl Physiol (1985) 2015; 118 (10) 1286-1298
  • 19 Meng Q, Kitasaka T, Nimura Y, Oda M, Ueno J, Mori K. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume. Int J CARS 2017; 12 (02) 245-261
  • 20 Yun J, Park J, Yu D. et al. Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net. Med Image Anal 2019; 51: 13-20
  • 21 Tan W, Yuan Y, Chen A, Mao L, Ke Y, Lv X. An approach for pulmonary vascular extraction from chest CT images. J Healthc Eng 2019; 2019: 9712970
  • 22 Ash SY, Rahaghi FN, Come CE. et al; SARP Investigators, The Severe Asthma Research Program (SARP) Cohort. Pruning of the pulmonary vasculature in asthma. Am J Respir Crit Care Med 2018; 198 (01) 39-50
  • 23 Tawhai M, Clark A, Donovan G, Burrowes K. Computational modeling of airway and pulmonary vascular structure and function: development of a “lung physiome”. Crit Rev Biomed Eng 2011; 39 (04) 319-336
  • 24 Jain N, Covar RA, Gleason MC, Newell Jr JD, Gelfand EW, Spahn JD. Quantitative computed tomography detects peripheral airway disease in asthmatic children. Pediatr Pulmonol 2005; 40 (03) 211-218
  • 25 Castro M, Fain SB, Hoffman EA, Gierada DS, Erzurum SC, Wenzel S. National Heart, Lung, and Blood Institute's Severe Asthma Research Program. Lung imaging in asthmatic patients: the picture is clearer. J Allergy Clin Immunol 2011; 128 (03) 467-478
  • 26 Galbán CJ, Han MK, Boes JL. et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 2012; 18 (11) 1711-1715
  • 27 Bell AJ, Foy BH, Richardson M. et al. Functional CT imaging for identification of the spatial determinants of small-airways disease in adults with asthma. J Allergy Clin Immunol 2019; 144 (01) 83-93
  • 28 Park J, Kim S, Lim J-K. et al. Quantitative CT image-based structural and functional changes during asthma acute exacerbations. J Appl Physiol (1985) 2021; 131 (03) 1056-1066
  • 29 Kirby M, Yin Y, Tschirren J. et al; CanCOLD Collaborative Research Group and the Canadian Respiratory Research Network. A novel method of estimating small airway disease using inspiratory-to-expiratory computed tomography. Respiration 2017; 94 (04) 336-345
  • 30 Choi S, Haghighi B, Choi J. et al. Differentiation of quantitative CT imaging phenotypes in asthma versus COPD. BMJ Open Respir Res 2017; 4 (01) e000252
  • 31 Hartley R, Barker B, Pakkal M. et al. Can quantitative computed tomography (QCT) differentiate between asthma & COPD in patients with similar degrees of airflow limitation?. Eur Respir J 2014; 44: 4971
  • 32 Chen H, Zeng QS, Zhang M. et al. Quantitative low-dose computed tomography of the lung parenchyma and airways for the differentiation between chronic obstructive pulmonary disease and asthma patients. Respiration 2017; 94 (04) 366-374
  • 33 Dournes G, Laurent F. Airway remodelling in asthma and COPD: findings, similarities, and differences using quantitative CT. Pulm Med 2012; 2012: 670414
  • 34 Amelon R, Cao K, Ding K, Christensen GE, Reinhardt JM, Raghavan ML. Three-dimensional characterization of regional lung deformation. J Biomech 2011; 44 (13) 2489-2495
  • 35 Krings JG, Goss CW, Lew D. et al; National Heart, Lung, and Blood Institute's Severe Asthma Research Program Investigators. Quantitative CT metrics are associated with longitudinal lung function decline and future asthma exacerbations: results from SARP-3. J Allergy Clin Immunol 2021; 148 (03) 752-762
  • 36 Yin Y, Hoffman EA, Lin C-L. Mass preserving nonrigid registration of CT lung images using cubic B-spline. Med Phys 2009; 36 (09) 4213-4222
  • 37 Jahani N, Choi S, Choi J. et al. A four-dimensional computed tomography comparison of healthy and asthmatic human lungs. J Biomech 2017; 56: 102-110
  • 38 Choi S, Hoffman EA, Wenzel SE. et al; National Heart, Lung and Blood Institute's Severe Asthma Research Program. Quantitative computed tomographic imaging-based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes. J Allergy Clin Immunol 2017; 140 (03) 690-700.e8
  • 39 Gupta S, Hartley R, Khan UT. et al. Quantitative computed tomography-derived clusters: redefining airway remodeling in asthmatic patients. J Allergy Clin Immunol 2014; 133 (03) 729-38.e18
  • 40 Inthavong K, Tu J, Ye Y, Ding S, Subic A, Thien F. Effects of airway obstruction induced by asthma attack on particle deposition. J Aerosol Sci 2010; 41: 587-601
  • 41 De Backer JW, Vos WG, Devolder A. et al. Computational fluid dynamics can detect changes in airway resistance in asthmatics after acute bronchodilation. J Biomech 2008; 41 (01) 106-113
  • 42 Choi S, Miyawaki S, Lin C-L. A feasible computational fluid dynamics study for relationships of structural and functional alterations with particle depositions in severe asthmatic lungs. Comput Math Methods Med 2018; 2018: 6564854
  • 43 Lin C-L, Tawhai MH, McLennan G, Hoffman EA. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol 2007; 157 (2-3): 295-309
  • 44 Choi J, Tawhai MH, Hoffman EA, Lin C-L. On intra- and intersubject variabilities of airflow in the human lungs. Phys Fluids (1994) 2009; 21 (10) 101901
  • 45 Yin Y, Choi J, Hoffman EA, Tawhai MH, Lin C-L. Simulation of pulmonary air flow with a subject-specific boundary condition. J Biomech 2010; 43 (11) 2159-2163
  • 46 Yin Y, Choi J, Hoffman EA, Tawhai MH, Lin C-L. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation. J Comput Phys 2013; 244: 168-192
  • 47 Choi J, Xia G, Tawhai MH, Hoffman EA, Lin C-L. Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model. Ann Biomed Eng 2010; 38 (12) 3550-3571
  • 48 Vinchurkar S, Backer LD, Vos W, Holsbeke CV, Backer JD, Backer WD. A case series on lung deposition analysis of inhaled medication using functional imaging based computational fluid dynamics in asthmatic patients: effect of upper airway morphology and comparison with in vivo data. Inhal Toxicol 2012; 24 (02) 81-88
  • 49 Longest PW, Bass K, Dutta R. et al. Use of computational fluid dynamics deposition modeling in respiratory drug delivery. Expert Opin Drug Deliv 2019; 16 (01) 7-26
  • 50 Choi J, LeBlanc LJ, Choi S. et al. Differences in particle deposition between members of imaging-based asthma clusters. J Aerosol Med Pulm Drug Deliv 2019; 32 (04) 213-223
  • 51 Rajaraman PK, Choi J, Hoffman EA. et al. Transport and deposition of hygroscopic particles in asthmatic subjects with and without airway narrowing. J Aerosol Sci 2020; 146: 105581
  • 52 Willmering MM, Robison RK, Wang H, Pipe JG, Woods JC. Implementation of the FLORET UTE sequence for lung imaging. Magn Reson Med 2019; 82 (03) 1091-1100
  • 53 Higano NS, Hahn AD, Tkach JA. et al. Retrospective respiratory self-gating and removal of bulk motion in pulmonary UTE MRI of neonates and adults. Magn Reson Med 2017; 77 (03) 1284-1295
  • 54 Jiang W, Ong F, Johnson KM. et al. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator. Magn Reson Med 2018; 79 (06) 2954-2967
  • 55 Togao O, Tsuji R, Ohno Y, Dimitrov I, Takahashi M. Ultrashort echo time (UTE) MRI of the lung: assessment of tissue density in the lung parenchyma. Magn Reson Med 2010; 64 (05) 1491-1498
  • 56 Lederlin M, Crémillieux Y. Three-dimensional assessment of lung tissue density using a clinical ultrashort echo time at 3 tesla: a feasibility study in healthy subjects. J Magn Reson Imaging 2014; 40 (04) 839-847
  • 57 Ma W, Sheikh K, Svenningsen S. et al. Ultra-short echo-time pulmonary MRI: evaluation and reproducibility in COPD subjects with and without bronchiectasis. J Magn Reson Imaging 2015; 41 (05) 1465-1474
  • 58 Dournes G, Menut F, Macey J. et al. Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution. Eur Radiol 2016; 26 (11) 3811-3820
  • 59 Sheikh K, Guo F, Capaldi DPI. et al; Canadian Respiratory Research Network. Ultrashort echo time MRI biomarkers of asthma. J Magn Reson Imaging 2017; 45 (04) 1204-1215
  • 60 Johnson KM, Fain SB, Schiebler ML, Nagle S. Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med 2013; 70 (05) 1241-1250
  • 61 Roach DJ, Crémillieux Y, Fleck RJ. et al. Ultrashort echo-time magnetic resonance imaging is a sensitive method for the evaluation of early cystic fibrosis lung disease. Ann Am Thorac Soc 2016; 13 (11) 1923-1931
  • 62 Baldacci F, Laurent F, Berger P, Dournes G. 3D human airway segmentation from high resolution MR imaging. Proc SPIE 11041, Eleventh International Conference on Machine Vision (ICMV 2018) 2019: 11041
  • 63 Edelman RR, Hatabu H, Tadamura E, Li W, Prasad PV. Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 1996; 2 (11) 1236-1239
  • 64 Zhang W-J, Niven RM, Young SS, Liu Y-Z, Parker GJM, Naish JH. Dynamic oxygen-enhanced magnetic resonance imaging of the lung in asthma – initial experience. Eur J Radiol 2015; 84 (02) 318-326
  • 65 Kruger SJ, Fain SB, Johnson KM, Cadman RV, Nagle SK. Oxygen-enhanced 3D radial ultrashort echo time magnetic resonance imaging in the healthy human lung. NMR Biomed 2014; 27 (12) 1535-1541
  • 66 Zha W, Kruger SJ, Johnson KM. et al. Pulmonary ventilation imaging in asthma and cystic fibrosis using oxygen-enhanced 3D radial ultrashort echo time MRI. J Magn Reson Imaging 2018; 47 (05) 1287-1297
  • 67 Ohno Y, Koyama H, Matsumoto K. et al. Oxygen-enhanced MRI vs. quantitatively assessed thin-section CT: pulmonary functional loss assessment and clinical stage classification of asthmatics. Eur J Radiol 2011; 77 (01) 85-91
  • 68 Ardenkjaer-Larsen JH, Fridlund B, Gram A. et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A 2003; 100 (18) 10158-10163
  • 69 Goodson BM. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms. J Magn Reson 2002; 155 (02) 157-216
  • 70 Walker TG, Happer W. Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys 1997; 69: 629-642
  • 71 Fain S, Schiebler ML, McCormack DG, Parraga G. Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: Review of current and emerging translational methods and applications. J Magn Reson Imaging 2010; 32 (06) 1398-1408
  • 72 Kaushik SS, Robertson SH, Freeman MS. et al. Single-breath clinical imaging of hyperpolarized (129)Xe in the airspaces, barrier, and red blood cells using an interleaved 3D radial 1-point Dixon acquisition. Magn Reson Med 2016; 75 (04) 1434-1443
  • 73 Horn FC, Rao M, Stewart NJ, Wild JM. Multiple breath washout of hyperpolarized 129Xe and 3He in human lungs with three-dimensional balanced steady-state free-precession imaging. Magn Reson Med 2017; 77 (06) 2288-2295
  • 74 Stewart NJ, Chan H-F, Hughes PJC. et al. Comparison of 3He and 129Xe MRI for evaluation of lung microstructure and ventilation at 1.5T. J Magn Reson Imaging 2018; 48: 632-642
  • 75 Tahir BA, Hughes PJC, Robinson SD. et al. Spatial comparison of CT-based surrogates of lung ventilation with hyperpolarized helium-3 and xenon-129 gas MRI in patients undergoing radiation therapy. Int J Radiat Oncol Biol Phys 2018; 102 (04) 1276-1286
  • 76 Marshall H, Collier GJ, Johns CS. et al. Imaging collateral ventilation in patients with advanced chronic obstructive pulmonary disease: relative sensitivity of 3He and 129Xe MRI. J Magn Reson Imaging 2019; 49 (04) 1195-1197
  • 77 Chan H-F, Collier GJ, Weatherley ND, Wild JM. Comparison of in vivo lung morphometry models from 3D multiple b-value 3He and 129Xe diffusion-weighted MRI. Magn Reson Med 2019; 81 (05) 2959-2971
  • 78 Kirby M, Ouriadov A, Svenningsen S. et al. Hyperpolarized 3He and 129Xe magnetic resonance imaging apparent diffusion coefficients: physiological relevance in older never- and ex-smokers. Physiol Rep 2014; 2 (07) e12068
  • 79 Kirby M, Svenningsen S, Kanhere N. et al. Pulmonary ventilation visualized using hyperpolarized helium-3 and xenon-129 magnetic resonance imaging: differences in COPD and relationship to emphysema. J Appl Physiol (1985) 2013; 114 (06) 707-715
  • 80 Kirby M, Svenningsen S, Owrangi A. et al. Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. Radiology 2012; 265 (02) 600-610
  • 81 Niedbalski PJ, Hall CS, Castro M. et al. Protocols for multi-site trials using hyperpolarized 129Xe MRI for imaging of ventilation, alveolar-airspace size, and gas exchange: a position paper from the 129Xe MRI clinical trials consortium. Magn Reson Med 2021; 86 (06) 2966-2986
  • 82 Svenningsen S, Nair P, Guo F, McCormack DG, Parraga G. Is ventilation heterogeneity related to asthma control?. Eur Respir J 2016; 48 (02) 370-379
  • 83 Kanhere N, Couch MJ, Kowalik K. et al. Correlation of lung clearance index with hyperpolarized 129Xe magnetic resonance imaging in pediatric subjects with cystic fibrosis. Am J Respir Crit Care Med 2017; 196 (08) 1073-1075
  • 84 de Lange EE, Altes TA, Patrie JT. et al. Evaluation of asthma with hyperpolarized helium-3 MRI: correlation with clinical severity and spirometry. Chest 2006; 130 (04) 1055-1062
  • 85 Zha W, Kruger SJ, Cadman RV. et al. Regional heterogeneity of lobar ventilation in asthma using hyperpolarized helium-3 MRI. Acad Radiol 2018; 25 (02) 169-178
  • 86 Svenningsen S, Kirby M, Starr D. et al. What are ventilation defects in asthma?. Thorax 2014; 69 (01) 63-71
  • 87 Mummy DG, Kruger SJ, Zha W. et al. Ventilation defect percent in helium-3 magnetic resonance imaging as a biomarker of severe outcomes in asthma. J Allergy Clin Immunol 2018; 141 (03) 1140-1141.e4
  • 88 Samee S, Altes T, Powers P. et al. Imaging the lungs in asthmatic patients by using hyperpolarized helium-3 magnetic resonance: assessment of response to methacholine and exercise challenge. J Allergy Clin Immunol 2003; 111 (06) 1205-1211
  • 89 Costella S, Kirby M, Maksym GN, McCormack DG, Paterson NAM, Parraga G. Regional pulmonary response to a methacholine challenge using hyperpolarized (3)He magnetic resonance imaging. Respirology 2012; 17 (08) 1237-1246
  • 90 Thomen RP, Walkup LL, Roach DJ, Cleveland ZI, Clancy JP, Woods JC. Hyperpolarized 129Xe for investigation of mild cystic fibrosis lung disease in pediatric patients. J Cyst Fibros 2017; 16 (02) 275-282
  • 91 Altes TA, Mugler III JP, Ruppert K. et al. Clinical correlates of lung ventilation defects in asthmatic children. J Allergy Clin Immunol 2016; 137 (03) 789-96.e7
  • 92 Lin NY, Roach DJ, Willmering MM. et al. 129Xe MRI as a measure of clinical disease severity for pediatric asthma. J Allergy Clin Immunol 2021; 147 (06) 2146-2153.e1
  • 93 Eddy RL, Svenningsen S, Licskai C, McCormack DG, Parraga G. Hyperpolarized helium 3 MRI in mild-to-moderate asthma: prediction of postbronchodilator reversibility. Radiology 2019; 293 (01) 212-220
  • 94 de Lange EE, Altes TA, Patrie JT. et al. Changes in regional airflow obstruction over time in the lungs of patients with asthma: evaluation with 3He MR imaging. Radiology 2009; 250 (02) 567-575
  • 95 Eddy RL, Matheson AM, Svenningsen S. et al. Nonidentical twins with asthma: spatially matched CT airway and MRI ventilation abnormalities. Chest 2019; 156 (06) e111-e116
  • 96 Mummy DG, Carey KJ, Evans MD. et al. Ventilation defects on hyperpolarized helium-3 MRI in asthma are predictive of 2-year exacerbation frequency. J Allergy Clin Immunol 2020; 146 (04) 831-839.e6
  • 97 Leary D, Svenningsen S, Guo F, Bhatawadekar S, Parraga G, Maksym GN. Hyperpolarized 3He magnetic resonance imaging ventilation defects in asthma: relationship to airway mechanics. Physiol Rep 2016; 4 (07) e12761
  • 98 Svenningsen S, Haider E, Boylan C. et al. CT and functional MRI to evaluate airway mucus in severe asthma. Chest 2019; 155 (06) 1178-1189
  • 99 Fain SB, Gonzalez-Fernandez G, Peterson ET. et al. Evaluation of structure-function relationships in asthma using multidetector CT and hyperpolarized He-3 MRI. Acad Radiol 2008; 15 (06) 753-762
  • 100 Hall CS, Quirk JD, Goss CW. et al. Single-session bronchial thermoplasty guided by 129Xe magnetic resonance imaging: a pilot randomized controlled clinical trial. Am J Respir Crit Care Med 2020; 202 (04) 524-534
  • 101 Thomen RP, Sheshadri A, Quirk JD. et al. Regional ventilation changes in severe asthma after bronchial thermoplasty with (3)He MR imaging and CT. Radiology 2015; 274 (01) 250-259
  • 102 Svenningsen S, Nair P, Eddy RL. et al. Bronchial thermoplasty guided by hyperpolarised gas magnetic resonance imaging in adults with severe asthma: a 1-year pilot randomised trial. ERJ Open Res 2021; 7 (03) 00268-02021
  • 103 Qing K, Mugler III JP, Altes TA. et al. Assessment of lung function in asthma and COPD using hyperpolarized 129Xe chemical shift saturation recovery spectroscopy and dissolved-phase MRI. NMR Biomed 2014; 27 (12) 1490-1501
  • 104 Driehuys B, Martinez-Jimenez S, Cleveland ZI. et al. Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized 129Xe MR imaging in healthy volunteers and patients. Radiology 2012; 262 (01) 279-289
  • 105 Walkup LL, Thomen RP, Akinyi TG. et al. Feasibility, tolerability and safety of pediatric hyperpolarized 129Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radiol 2016; 46 (12) 1651-1662
  • 106 Shukla Y, Wheatley A, Kirby M. et al. Hyperpolarized 129Xe magnetic resonance imaging: tolerability in healthy volunteers and subjects with pulmonary disease. Acad Radiol 2012; 19 (08) 941-951
  • 107 Shim Y, Mata J, Hartwig M. et al. Randomized phase III trial assessing regional lung function for thoracic resection by hyperpolarized 129Xenon gas MRI. Eur Respir J 2020; 56: 2080
  • 108 Shim YMM, Mata J, Hartwig M. et al. Positive results from two randomized phase III trials assessing hyperpolarized 129Xenon gas MRI as a measure of regional lung function as compared to imaging with 133Xenon scintigraphy. Am J Respir Crit Care Med 2020; 201: A3265
  • 109 Rhodes CG, Valind SO, Brudin LH. et al. Quantification of regional V/Q ratios in humans by use of PET. II. Procedure and normal values. J Appl Physiol (1985) 1989; 66 (04) 1905-1913
  • 110 Tgavalekos NT, Tawhai M, Harris RS. et al. Identifying airways responsible for heterogeneous ventilation and mechanical dysfunction in asthma: an image functional modeling approach. J Appl Physiol (1985) 2005; 99 (06) 2388-2397
  • 111 Venegas JG, Winkler T, Musch G. et al. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature 2005; 434 (7034): 777-782
  • 112 Jones HA, Marino PS, Shakur BH, Morrell NW. In vivo assessment of lung inflammatory cell activity in patients with COPD and asthma. Eur Respir J 2003; 21 (04) 567-573
  • 113 Taylor IK, Hill AA, Hayes M. et al. Imaging allergen-invoked airway inflammation in atopic asthma with [18F]-fluorodeoxyglucose and positron emission tomography. Lancet 1996; 347 (9006): 937-940
  • 114 Harris RS, Venegas JG, Wongviriyawong C. et al. 18F-FDG uptake rate is a biomarker of eosinophilic inflammation and airway response in asthma. J Nucl Med 2011; 52 (11) 1713-1720
  • 115 Zavala F, Lenfant M. Benzodiazepines and PK 11195 exert immunomodulating activities by binding on a specific receptor on macrophages. Ann N Y Acad Sci 1987; 496: 240-249
  • 116 Schou M, Ewing P, Cselenyi Z. et al. Pulmonary PET imaging confirms preferential lung target occupancy of an inhaled bronchodilator. EJNMMI Res 2019; 9 (01) 9
  • 117 Cselényi Z, Jucaite A, Kristensson C. et al. Quantification and reliability of [11C]VC - 002 binding to muscarinic acetylcholine receptors in the human lung - a test-retest PET study in control subjects. EJNMMI Res 2020; 10 (01) 59
  • 118 Gargani L, Volpicelli G. How I do it: lung ultrasound. Cardiovasc Ultrasound 2014; 12: 25
  • 119 Del Colle A, Carpagnano GE, Feragalli B. et al. Transthoracic ultrasound sign in severe asthmatic patients: a lack of “gliding sign” mimic pneumothorax. BJR Case Rep 2019; 5 (04) 20190030
  • 120 Patel CJ, Bhatt HB, Parikh SN, Jhaveri BN, Puranik JH. Bedside lung ultrasound in emergency protocol as a diagnostic tool in patients of acute respiratory distress presenting to emergency department. J Emerg Trauma Shock 2018; 11 (02) 125-129
  • 121 Dankoff S, Li P, Shapiro AJ, Varshney T, Dubrovsky AS. Point of care lung ultrasound of children with acute asthma exacerbations in the pediatric ED. Am J Emerg Med 2017; 35 (04) 615-622
  • 122 Varshney T, Mok E, Shapiro AJ, Li P, Dubrovsky AS. Point-of-care lung ultrasound in young children with respiratory tract infections and wheeze. Emerg Med J 2016; 33 (09) 603-610
  • 123 Anantham D, Koh MS, Ernst A. Endobronchial ultrasound. Respir Med 2009; 103 (10) 1406-1414
  • 124 Gorska K, Korczynski P, Mierzejewski M. et al. Comparison of endobronchial ultrasound and high resolution computed tomography as tools for airway wall imaging in asthma and chronic obstructive pulmonary disease. Respir Med 2016; 117: 131-138
  • 125 Shaw TJ, Wakely SL, Peebles CR. et al. Endobronchial ultrasound to assess airway wall thickening: validation in vitro and in vivo. Eur Respir J 2004; 23 (06) 813-817
  • 126 Soja J, Grzanka P, Sładek K. et al. The use of endobronchial ultrasonography in assessment of bronchial wall remodeling in patients with asthma. Chest 2009; 136 (03) 797-804
  • 127 Hou R, Le T, Murgu SD, Chen Z, Brenner M. Recent advances in optical coherence tomography for the diagnoses of lung disorders. Expert Rev Respir Med 2011; 5 (05) 711-724
  • 128 Williamson JP, McLaughlin RA, Noffsinger WJ. et al. Elastic properties of the central airways in obstructive lung diseases measured using anatomical optical coherence tomography. Am J Respir Crit Care Med 2011; 183 (05) 612-619
  • 129 Coxson HO, Quiney B, Sin DD. et al. Airway wall thickness assessed using computed tomography and optical coherence tomography. Am J Respir Crit Care Med 2008; 177 (11) 1201-1206
  • 130 Su Z-Q, Zhou Z-Q, Guan W-J. et al. Airway remodeling and bronchodilator responses in asthma assessed by endobronchial optical coherence tomography. Allergy 2022; 77 (02) 646-649
  • 131 Chen Y, Ding M, Guan WJ. et al. Validation of human small airway measurements using endobronchial optical coherence tomography. Respir Med 2015; 109 (11) 1446-1453
  • 132 Kirby M, Ohtani K, Lopez Lisbona RM. et al. Bronchial thermoplasty in asthma: 2-year follow-up using optical coherence tomography. Eur Respir J 2015; 46 (03) 859-862
  • 133 Goorsenberg AWM, d'Hooghe JNS, de Bruin DM, van den Berk IAH, Annema JT, Bonta PI. Bronchial thermoplasty-induced acute airway effects assessed with optical coherence tomography in severe asthma. Respiration 2018; 96 (06) 564-570