Semin Liver Dis 2022; 42(02): 122-137
DOI: 10.1055/s-0042-1748037
Review Article

Intestinal Barrier Dysfunction in Fatty Liver Disease: Roles of Microbiota, Mucosal Immune System, and Bile Acids

Biki Gupta
1   Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
,
Ravi Rai
1   Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
,
Michael Oertel
1   Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
2   Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
3   McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
,
Reben Raeman
1   Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
2   Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
› Author Affiliations
Funding This work was supported by the NIH/NIDDK awards K01DK110264 and R01DK124351 to R.R., R01DK130949 to R.R. and M.O., and P30DK120531 to Pittsburgh Liver Research Center.


Abstract

Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of progressive liver diseases ranging from simple steatosis to steatohepatitis and fibrosis. Globally, NAFLD is the leading cause of morbidity and mortality associated with chronic liver disease, and NAFLD patients are at a higher risk of developing cirrhosis and hepatocellular carcinoma. While there is a consensus that inflammation plays a key role in promoting NAFLD progression, the underlying mechanisms are not well understood. Recent clinical and experimental evidence suggest that increased hepatic translocation of gut microbial antigens, secondary to diet-induced impairment of the intestinal barrier may be important in driving hepatic inflammation in NAFLD. Here, we briefly review various endogenous and exogenous factors influencing the intestinal barrier and present recent advances in our understanding of cellular and molecular mechanisms underlying intestinal barrier dysfunction in NAFLD.



Publication History

Article published online:
23 June 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Schuppan D, Schattenberg JM. Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol 2013; 28 (Suppl. 01) 68-76
  • 2 Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64 (01) 73-84
  • 3 Chalasani N, Younossi Z, Lavine JE. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67 (01) 328-357
  • 4 Paik JM, Golabi P, Younossi Y, Mishra A, Younossi ZM. Changes in the global burden of chronic liver diseases from 2012 to 2017: the growing impact of NAFLD. Hepatology 2020; 72 (05) 1605-1616
  • 5 Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol 2019; 16 (07) 411-428
  • 6 Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2021; 18 (04) 223-238
  • 7 Younossi ZM. Non-alcoholic fatty liver disease - a global public health perspective. J Hepatol 2019; 70 (03) 531-544
  • 8 Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 2018; 67 (01) 123-133
  • 9 Harmon RC, Tiniakos DG, Argo CK. Inflammation in nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol 2011; 5 (02) 189-200
  • 10 Gao B, Tsukamoto H. Inflammation in alcoholic and nonalcoholic fatty liver disease: friend or foe?. Gastroenterology 2016; 150 (08) 1704-1709
  • 11 Diehl AM, Day C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med 2017; 377 (21) 2063-2072
  • 12 Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol 2018; 15 (06) 349-364
  • 13 Luci C, Bourinet M, Leclère PS, Anty R, Gual P. Chronic inflammation in non-alcoholic steatohepatitis: molecular mechanisms and therapeutic strategies. Front Endocrinol (Lausanne) 2020; 11: 597648
  • 14 Parthasarathy G, Revelo X, Malhi H. Pathogenesis of nonalcoholic steatohepatitis: an overview. Hepatol Commun 2020; 4 (04) 478-492
  • 15 Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 2014; 14 (03) 141-153
  • 16 Odenwald MA, Turner JR. The intestinal epithelial barrier: a therapeutic target?. Nat Rev Gastroenterol Hepatol 2017; 14 (01) 9-21
  • 17 Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med 2017; 49 (05) e338
  • 18 Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med 2018; 50 (08) 1-9
  • 19 Ohno H. Intestinal M cells. J Biochem 2016; 159 (02) 151-160
  • 20 Birchenough GM, Johansson ME, Gustafsson JK, Bergström JH, Hansson GC. New developments in goblet cell mucus secretion and function. Mucosal Immunol 2015; 8 (04) 712-719
  • 21 Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners?. Gut 2020; 69 (12) 2232-2243
  • 22 Ahluwalia B, Magnusson MK, Öhman L. Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad. Scand J Gastroenterol 2017; 52 (11) 1185-1193
  • 23 Karasov WH. Integrative physiology of transcellular and paracellular intestinal absorption. J Exp Biol 2017; 220 (Pt 14): 2495-2501
  • 24 Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 2008; 1778 (03) 660-669
  • 25 Harris TJ, Tepass U. Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 2010; 11 (07) 502-514
  • 26 Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol 2016; 17 (09) 564-580
  • 27 Garcia MA, Nelson WJ, Chavez N. Cell-cell junctions organize structural and signaling networks. Cold Spring Harb Perspect Biol 2018; 10 (04) a029181
  • 28 Aijaz S, Balda MS, Matter K. Tight junctions: molecular architecture and function. Int Rev Cytol 2006; 248: 261-298
  • 29 Krug SM, Schulzke JD, Fromm M. Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol 2014; 36: 166-176
  • 30 Luissint AC, Parkos CA, Nusrat A. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology 2016; 151 (04) 616-632
  • 31 Buckley A, Turner JR. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb Perspect Biol 2018; 10 (01) a029314
  • 32 Shen L, Weber CR, Raleigh DR, Yu D, Turner JR. Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 2011; 73: 283-309
  • 33 Tsukita S, Tanaka H, Tamura A. The claudins: from tight junctions to biological systems. Trends Biochem Sci 2019; 44 (02) 141-152
  • 34 Lin PW, Stoll BJ. Necrotising enterocolitis. Lancet 2006; 368 (9543): 1271-1283
  • 35 Shen L, Su L, Turner JR. Mechanisms and functional implications of intestinal barrier defects. Dig Dis 2009; 27 (04) 443-449
  • 36 Niño DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat Rev Gastroenterol Hepatol 2016; 13 (10) 590-600
  • 37 France MM, Turner JR. The mucosal barrier at a glance. J Cell Sci 2017; 130 (02) 307-314
  • 38 He WQ, Wang J, Sheng JY, Zha JM, Graham WV, Turner JR. Contributions of myosin light chain kinase to regulation of epithelial paracellular permeability and mucosal homeostasis. Int J Mol Sci 2020; 21 (03) E993
  • 39 Mooradian AD, Morley JE, Levine AS, Prigge WF, Gebhard RL. Abnormal intestinal permeability to sugars in diabetes mellitus. Diabetologia 1986; 29 (04) 221-224
  • 40 Cani PD, Amar J, Iglesias MA. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56 (07) 1761-1772
  • 41 Brun P, Castagliuolo I, Di Leo V. et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2007; 292 (02) G518-G525
  • 42 Cani PD, Bibiloni R, Knauf C. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57 (06) 1470-1481
  • 43 Stenman LK, Holma R, Korpela R. High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids. World J Gastroenterol 2012; 18 (09) 923-929
  • 44 Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 2012; 142 (05) 1100-1101.e2
  • 45 Jin R, Willment A, Patel SS. et al. Fructose induced endotoxemia in pediatric nonalcoholic fatty liver disease. Int J Hepatol 2014; 2014: 560620
  • 46 Kavanagh K, Wylie AT, Tucker KL. et al. Dietary fructose induces endotoxemia and hepatic injury in calorically controlled primates. Am J Clin Nutr 2013; 98 (02) 349-357
  • 47 Bergheim I, Weber S, Vos M. et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol 2008; 48 (06) 983-992
  • 48 Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol 2020; 20 (01) 40-54
  • 49 Massier L, Blüher M, Kovacs P, Chakaroun RM. Impaired intestinal barrier and tissue bacteria: pathomechanisms for metabolic diseases. Front Endocrinol (Lausanne) 2021; 12: 616506
  • 50 Miele L, Valenza V, La Torre G. et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009; 49 (06) 1877-1887
  • 51 Alisi A, Manco M, Devito R, Piemonte F, Nobili V. Endotoxin and plasminogen activator inhibitor-1 serum levels associated with nonalcoholic steatohepatitis in children. J Pediatr Gastroenterol Nutr 2010; 50 (06) 645-649
  • 52 Giorgio V, Miele L, Principessa L. et al. Intestinal permeability is increased in children with non-alcoholic fatty liver disease, and correlates with liver disease severity. Dig Liver Dis 2014; 46 (06) 556-560
  • 53 Guercio Nuzio S, Di Stasi M, Pierri L. et al. Multiple gut-liver axis abnormalities in children with obesity with and without hepatic involvement. Pediatr Obes 2017; 12 (06) 446-452
  • 54 Sharifnia T, Antoun J, Verriere TG. et al. Hepatic TLR4 signaling in obese NAFLD. Am J Physiol Gastrointest Liver Physiol 2015; 309 (04) G270-G278
  • 55 Kapil S, Duseja A, Sharma BK. et al. Small intestinal bacterial overgrowth and toll-like receptor signaling in patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2016; 31 (01) 213-221
  • 56 Kiziltas S, Ata P, Colak Y. et al. TLR4 gene polymorphism in patients with nonalcoholic fatty liver disease in comparison to healthy controls. Metab Syndr Relat Disord 2014; 12 (03) 165-170
  • 57 Luther J, Garber JJ, Khalili H. et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol Gastroenterol Hepatol 2015; 1 (02) 222-232
  • 58 Loomba R, Seguritan V, Li W. et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab 2017; 25 (05) 1054-1062.e5
  • 59 Rahman K, Desai C, Iyer SS. et al. Loss of junctional adhesion molecule A promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology 2016; 151 (04) 733-746.e12
  • 60 MacPherson G, Milling S, Yrlid U, Cousins L, Turnbull E, Huang FP. Uptake of antigens from the intestine by dendritic cells. Ann N Y Acad Sci 2004; 1029: 75-82
  • 61 Koboziev I, Karlsson F, Grisham MB. Gut-associated lymphoid tissue, T cell trafficking, and chronic intestinal inflammation. Ann N Y Acad Sci 2010; 1207 (Suppl. 01) E86-E93
  • 62 Campbell DJ, Butcher EC. Rapid acquisition of tissue-specific homing phenotypes by CD4(+) T cells activated in cutaneous or mucosal lymphoid tissues. J Exp Med 2002; 195 (01) 135-141
  • 63 McGhee JR, Fujihashi K. Inside the mucosal immune system. PLoS Biol 2012; 10 (09) e1001397
  • 64 Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 2010; 140 (06) 845-858
  • 65 Wu W, Chen F, Liu Z, Cong Y. Microbiota-specific Th17 cells: Yin and Yang in regulation of inflammatory bowel disease. Inflamm Bowel Dis 2016; 22 (06) 1473-1482
  • 66 Sun M, He C, Cong Y, Liu Z. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota. Mucosal Immunol 2015; 8 (05) 969-978
  • 67 Keir M, Yi Y, Lu T, Ghilardi N. The role of IL-22 in intestinal health and disease. J Exp Med 2020; 217 (03) e20192195
  • 68 Harbour SN, Maynard CL, Zindl CL, Schoeb TR, Weaver CT. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc Natl Acad Sci U S A 2015; 112 (22) 7061-7066
  • 69 Imam T, Park S, Kaplan MH, Olson MR. Effector T helper cell subsets in inflammatory bowel diseases. Front Immunol 2018; 9: 1212
  • 70 Tindemans I, Joosse ME, Samsom JN. Dissecting the heterogeneity in T-cell mediated inflammation in IBD. Cells 2020; 9 (01) E110
  • 71 Musch MW, Clarke LL, Mamah D. et al. T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+-ATPase. J Clin Invest 2002; 110 (11) 1739-1747
  • 72 Clayburgh DR, Barrett TA, Tang Y. et al. Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J Clin Invest 2005; 115 (10) 2702-2715
  • 73 Bruewer M, Luegering A, Kucharzik T. et al. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 2003; 171 (11) 6164-6172
  • 74 Bruewer M, Utech M, Ivanov AI, Hopkins AM, Parkos CA, Nusrat A. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J 2005; 19 (08) 923-933
  • 75 Watson CJ, Hoare CJ, Garrod DR, Carlson GL, Warhurst G. Interferon-gamma selectively increases epithelial permeability to large molecules by activating different populations of paracellular pores. J Cell Sci 2005; 118 (Pt 22): 5221-5230
  • 76 Wang F, Schwarz BT, Graham WV. et al. IFN-gamma-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. Gastroenterology 2006; 131 (04) 1153-1163
  • 77 Leach MW, Davidson NJ, Fort MM, Powrie F, Rennick DM. The role of IL-10 in inflammatory bowel disease: “of mice and men”. Toxicol Pathol 1999; 27 (01) 123-133
  • 78 Ihara S, Hirata Y, Koike K. TGF-β in inflammatory bowel disease: a key regulator of immune cells, epithelium, and the intestinal microbiota. J Gastroenterol 2017; 52 (07) 777-787
  • 79 Friedrich M, Pohin M, Powrie F. Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity 2019; 50 (04) 992-1006
  • 80 Mahida YR. The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis 2000; 6 (01) 21-33
  • 81 Koch S, Kucharzik T, Heidemann J, Nusrat A, Luegering A. Investigating the role of proinflammatory CD16+ monocytes in the pathogenesis of inflammatory bowel disease. Clin Exp Immunol 2010; 161 (02) 332-341
  • 82 Zhou GX, Liu ZJ. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J Dig Dis 2017; 18 (09) 495-503
  • 83 Liu H, Dasgupta S, Fu Y. et al. Subsets of mononuclear phagocytes are enriched in the inflamed colons of patients with IBD. BMC Immunol 2019; 20 (01) 42
  • 84 Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol 2019; 16 (09) 531-543
  • 85 Geremia A, Arancibia-Cárcamo CV. Innate lymphoid cells in intestinal inflammation. Front Immunol 2017; 8: 1296
  • 86 Wu Y, Shen J. Innate lymphoid cells in Crohn's disease. Front Immunol 2020; 11: 554880
  • 87 Saez A, Gomez-Bris R, Herrero-Fernandez B, Mingorance C, Rius C, Gonzalez-Granado JM. Innate lymphoid cells in intestinal homeostasis and inflammatory bowel disease. Int J Mol Sci 2021; 22 (14) 7618
  • 88 Colonna M. Innate lymphoid cells: diversity, plasticity, and unique functions in immunity. Immunity 2018; 48 (06) 1104-1117
  • 89 Cherrier M, Ramachandran G, Golub R. The interplay between innate lymphoid cells and T cells. Mucosal Immunol 2020; 13 (05) 732-742
  • 90 Pearson T, Shultz LD, Miller D. et al. Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol 2008; 154 (02) 270-284
  • 91 Panda SK, Colonna M. Innate lymphoid cells in mucosal immunity. Front Immunol 2019; 10: 861
  • 92 Castellanos JG, Longman RS. Innate lymphoid cells link gut microbes with mucosal T cell immunity. Gut Microbes 2020; 11 (02) 231-236
  • 93 Zmora N, Bashiardes S, Levy M, Elinav E. The role of the immune system in metabolic health and disease. Cell Metab 2017; 25 (03) 506-521
  • 94 Lee SH, Kwon JE, Cho ML. Immunological pathogenesis of inflammatory bowel disease. Intest Res 2018; 16 (01) 26-42
  • 95 Rai RP, Liu Y, Iyer SS. et al. Blocking integrin α4β7-mediated CD4 T cell recruitment to the intestine and liver protects mice from western diet-induced non-alcoholic steatohepatitis. J Hepatol 2020; 73 (05) 1013-1022
  • 96 Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486 (7402): 207-214
  • 97 Heintz-Buschart A, Wilmes P. Human gut microbiome: function matters. Trends Microbiol 2018; 26 (07) 563-574
  • 98 Rowland I, Gibson G, Heinken A. et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 2018; 57 (01) 1-24
  • 99 Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 2019; 7 (01) 91
  • 100 Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol 2021; 19 (02) 77-94
  • 101 Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK. Specialized metabolites from the microbiome in health and disease. Cell Metab 2014; 20 (05) 719-730
  • 102 Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 2017; 18 (01) 2
  • 103 Man AWC, Zhou Y, Xia N, Li H. Involvement of gut microbiota, microbial metabolites and interaction with polyphenol in host immunometabolism. Nutrients 2020; 12 (10) E3054
  • 104 Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157 (01) 121-141
  • 105 Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30 (06) 492-506
  • 106 Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res 2017; 120 (07) 1183-1196
  • 107 Tsilimigras MC, Fodor A, Jobin C. Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol 2017; 2: 17008
  • 108 Pei LY, Ke YS, Zhao HH. et al. Role of colonic microbiota in the pathogenesis of ulcerative colitis. BMC Gastroenterol 2019; 19 (01) 10
  • 109 Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. J Clin Invest 2019; 129 (10) 4050-4057
  • 110 Lee CJ, Sears CL, Maruthur N. Gut microbiome and its role in obesity and insulin resistance. Ann N Y Acad Sci 2020; 1461 (01) 37-52
  • 111 Quesada-Vázquez S, Aragonès G, Del Bas JM, Escoté X. Diet, gut microbiota and non-alcoholic fatty liver disease: three parts of the same axis. Cells 2020; 9 (01) E176
  • 112 Aron-Wisnewsky J, Vigliotti C, Witjes J. et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol 2020; 17 (05) 279-297
  • 113 Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 2021; 19 (01) 55-71
  • 114 Rodríguez JM, Murphy K, Stanton C. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 2015; 26: 26050
  • 115 Falony G, Vieira-Silva S, Raes J. Richness and ecosystem development across faecal snapshots of the gut microbiota. Nat Microbiol 2018; 3 (05) 526-528
  • 116 Zeevi D, Korem T, Godneva A. et al. Structural variation in the gut microbiome associates with host health. Nature 2019; 568 (7750): 43-48
  • 117 Fukata M, Michelsen KS, Eri R. et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol 2005; 288 (05) G1055-G1065
  • 118 Chen GY, Shaw MH, Redondo G, Núñez G. The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res 2008; 68 (24) 10060-10067
  • 119 Claes AK, Zhou JY, Philpott DJ. NOD-like receptors: guardians of intestinal mucosal barriers. Physiology (Bethesda) 2015; 30 (03) 241-250
  • 120 Hernández-Chirlaque C, Aranda CJ, Ocón B. et al. Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis. J Crohn's Colitis 2016; 10 (11) 1324-1335
  • 121 Khosravi A, Mazmanian SK. Disruption of the gut microbiome as a risk factor for microbial infections. Curr Opin Microbiol 2013; 16 (02) 221-227
  • 122 Falk PG, Hooper LV, Midtvedt T, Gordon JI. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 1998; 62 (04) 1157-1170
  • 123 Slezak K, Krupova Z, Rabot S. et al. Association of germ-free mice with a simplified human intestinal microbiota results in a shortened intestine. Gut Microbes 2014; 5 (02) 176-182
  • 124 Sharma R, Young C, Neu J. Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol 2010; 2010: 305879
  • 125 Khosravi A, Yáñez A, Price JG. et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 2014; 15 (03) 374-381
  • 126 Crabbé PA, Bazin H, Eyssen H, Heremans JF. The normal microbial flora as a major stimulus for proliferation of plasma cells synthesizing IgA in the gut. The germ-free intestinal tract. Int Arch Allergy Appl Immunol 1968; 34 (04) 362-375
  • 127 Ivanov II, Atarashi K, Manel N. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139 (03) 485-498
  • 128 Atarashi K, Tanoue T, Shima T. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331 (6015): 337-341
  • 129 Ohnmacht C, Park JH, Cording S. et al. Mucosal immunology. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 2015; 349 (6251): 989-993
  • 130 Cervantes-Barragan L, Chai JN, Tianero MD. et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science 2017; 357 (6353): 806-810
  • 131 Tan TG, Sefik E, Geva-Zatorsky N. et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S A 2016; 113 (50) E8141-E8150
  • 132 Geva-Zatorsky N, Sefik E, Kua L. et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 2017; 168 (05) 928-943.e11
  • 133 Dasgupta S, Erturk-Hasdemir D, Ochoa-Reparaz J, Reinecker HC, Kasper DL. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe 2014; 15 (04) 413-423
  • 134 Atarashi K, Tanoue T, Oshima K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500 (7461): 232-236
  • 135 Sefik E, Geva-Zatorsky N, Oh S. et al. Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 2015; 349 (6251): 993-997
  • 136 Muniz LR, Knosp C, Yeretssian G. Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front Immunol 2012; 3: 310
  • 137 Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 2017; 279 (01) 70-89
  • 138 Alam A, Neish A. Role of gut microbiota in intestinal wound healing and barrier function. Tissue Barriers 2018; 6 (03) 1539595
  • 139 Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of intestinal barrier function by microbial metabolites. Cell Mol Gastroenterol Hepatol 2021; 11 (05) 1463-1482
  • 140 Kim MS, Park EJ, Roh SW, Bae JW. Diversity and abundance of single-stranded DNA viruses in human feces. Appl Environ Microbiol 2011; 77 (22) 8062-8070
  • 141 Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD. Rapid evolution of the human gut virome. Proc Natl Acad Sci U S A 2013; 110 (30) 12450-12455
  • 142 Guerin E, Shkoporov A, Stockdale SR. et al. Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. Cell Host Microbe 2018; 24 (05) 653-664.e6
  • 143 Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI. Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol 2012; 10 (09) 607-617
  • 144 Reyes A, Blanton LV, Cao S. et al. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc Natl Acad Sci U S A 2015; 112 (38) 11941-11946
  • 145 Norman JM, Handley SA, Baldridge MT. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 2015; 160 (03) 447-460
  • 146 Monaco CL, Gootenberg DB, Zhao G. et al. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host Microbe 2016; 19 (03) 311-322
  • 147 Ma Y, You X, Mai G, Tokuyasu T, Liu C. A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome 2018; 6 (01) 24
  • 148 Zuo T, Lu XJ, Zhang Y. et al. Gut mucosal virome alterations in ulcerative colitis. Gut 2019; 68 (07) 1169-1179
  • 149 Lang S, Demir M, Martin A. et al. Intestinal virome signature associated with severity of nonalcoholic fatty liver disease. Gastroenterology 2020; 159 (05) 1839-1852
  • 150 Chen Q, Ma X, Li C. et al. Enteric phageome alterations in patients with type 2 diabetes. Front Cell Infect Microbiol 2021; 10: 575084
  • 151 Jiang L, Lang S, Duan Y. et al. Intestinal virome in patients with alcoholic hepatitis. Hepatology 2020; 72 (06) 2182-2196
  • 152 Hsu CL, Duan Y, Fouts DE, Schnabl B. Intestinal virome and therapeutic potential of bacteriophages in liver disease. J Hepatol 2021; 75 (06) 1465-1475
  • 153 Yang K, Niu J, Zuo T. et al. Alterations in the gut virome in obesity and type 2 diabetes mellitus. Gastroenterology 2021; 161 (04) 1257-1269.e13
  • 154 Bikel S, López-Leal G, Cornejo-Granados F. et al. Gut dsDNA virome shows diversity and richness alterations associated with childhood obesity and metabolic syndrome. iScience 2021; 24 (08) 102900
  • 155 Liang G, Cobián-Güemes AG, Albenberg L, Bushman F. The gut virome in inflammatory bowel diseases. Curr Opin Virol 2021; 51: 190-198
  • 156 Fairfield B, Schnabl B. Gut dysbiosis as a driver in alcohol-induced liver injury. JHEP Rep 2020; 3 (02) 100220
  • 157 Gao W, Zhu Y, Ye J, Chu H. Gut non-bacterial microbiota contributing to alcohol-associated liver disease. Gut Microbes 2021; 13 (01) 1984122
  • 158 De Sordi L, Lourenço M, Debarbieux L. The battle within: interactions of Bacteriophages and Bacteria in the gastrointestinal tract. Cell Host Microbe 2019; 25 (02) 210-218
  • 159 Yang JY, Kim MS, Kim E. et al. Enteric viruses ameliorate gut inflammation via Toll-like receptor 3 and Toll-like receptor 7-mediated interferon-β production. Immunity 2016; 44 (04) 889-900
  • 160 Barr JJ, Auro R, Furlan M. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A 2013; 110 (26) 10771-10776
  • 161 Almeida GMF, Laanto E, Ashrafi R, Sundberg LR. Bacteriophage adherence to mucus mediates preventive protection against pathogenic bacteria. MBio 2019; 10 (06) e01984-19
  • 162 Cornuault JK, Petit MA, Mariadassou M. et al. Phages infecting Faecalibacterium prausnitzii belong to novel viral genera that help to decipher intestinal viromes. Microbiome 2018; 6 (01) 65
  • 163 Gogokhia L, Buhrke K, Bell R. et al. Expansion of Bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 2019; 25 (02) 285-299.e8
  • 164 Fiers WD, Gao IH, Iliev ID. Gut mycobiota under scrutiny: fungal symbionts or environmental transients?. Curr Opin Microbiol 2019; 50: 79-86
  • 165 Jiang TT, Shao TY, Ang WXG. et al. Commensal fungi recapitulate the protective benefits of intestinal bacteria. Cell Host Microbe 2017; 22 (06) 809-816.e4
  • 166 Iliev ID, Leonardi I. Fungal dysbiosis: immunity and interactions at mucosal barriers. Nat Rev Immunol 2017; 17 (10) 635-646
  • 167 Li XV, Leonardi I, Iliev ID. Gut mycobiota in immunity and inflammatory disease. Immunity 2019; 50 (06) 1365-1379
  • 168 Muratori P, Muratori L, Guidi M. et al. Anti-Saccharomyces cerevisiae antibodies (ASCA) and autoimmune liver diseases. Clin Exp Immunol 2003; 132 (03) 473-476
  • 169 Mar Rodríguez M, Pérez D, Javier Chaves F. et al. Obesity changes the human gut mycobiome. Sci Rep 2015; 5: 14600
  • 170 Huseyin CE, O'Toole PW, Cotter PD, Scanlan PD. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol Rev 2017; 41 (04) 479-511
  • 171 Yang AM, Inamine T, Hochrath K. et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest 2017; 127 (07) 2829-2841
  • 172 Jayasudha R, Das T, Kalyana Chakravarthy S. et al. Gut mycobiomes are altered in people with type 2 diabetes mellitus and diabetic retinopathy. PLoS One 2020; 15 (12) e0243077
  • 173 Lang S, Duan Y, Liu J. et al. Intestinal fungal dysbiosis and systemic immune response to fungi in patients with alcoholic hepatitis. Hepatology 2020; 71 (02) 522-538
  • 174 Iliev ID. Mycobiota-host immune interactions in IBD: coming out of the shadows. Nat Rev Gastroenterol Hepatol 2022; 19 (02) 91-92
  • 175 Jiang L, Stärkel P, Fan JG, Fouts DE, Bacher P, Schnabl B. The gut mycobiome: a novel player in chronic liver diseases. J Gastroenterol 2021; 56 (01) 1-11
  • 176 Hartmann P, Lang S, Zeng S. et al. Dynamic changes of the fungal microbiome in alcohol use disorder. Front Physiol 2021; 12: 699253
  • 177 Richard ML, Sokol H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2019; 16 (06) 331-345
  • 178 Mouzaki M, Comelli EM, Arendt BM. et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 2013; 58 (01) 120-127
  • 179 Boursier J, Mueller O, Barret M. et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016; 63 (03) 764-775
  • 180 Del Chierico F, Nobili V, Vernocchi P. et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 2017; 65 (02) 451-464
  • 181 Caussy C, Tripathi A, Humphrey G. et al. A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nat Commun 2019; 10 (01) 1406
  • 182 Bastian WP, Hasan I, Lesmana CRA, Rinaldi I, Gani RA. Gut microbiota profiles in nonalcoholic fatty liver disease and its possible impact on disease progression evaluated with transient elastography: lesson learnt from 60 cases. Case Rep Gastroenterol 2019; 13 (01) 125-133
  • 183 Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 2001; 48 (02) 206-211
  • 184 Shanab AA, Scully P, Crosbie O. et al. Small intestinal bacterial overgrowth in nonalcoholic steatohepatitis: association with toll-like receptor 4 expression and plasma levels of interleukin 8. Dig Dis Sci 2011; 56 (05) 1524-1534
  • 185 Chiang JY. Bile acids: regulation of synthesis. J Lipid Res 2009; 50 (10) 1955-1966
  • 186 Chiang JY. Recent advances in understanding bile acid homeostasis. F1000 Res 2017; 6: 2029
  • 187 Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res 2015; 56 (06) 1085-1099
  • 188 Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol 2014; 30 (03) 332-338
  • 189 Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 2016; 24 (01) 41-50
  • 190 Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, Méndez-Sánchez N. The role of the gut microbiota in bile acid metabolism. Ann Hepatol 2017; 16 (Suppl. 1: s3-105.): s15-s20
  • 191 Camilleri M. Bile acid diarrhea: prevalence, pathogenesis, and therapy. Gut Liver 2015; 9 (03) 332-339
  • 192 Oduyebo I, Camilleri M. Bile acid disease: the emerging epidemic. Curr Opin Gastroenterol 2017; 33 (03) 189-195
  • 193 Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol 2017; 101 (01) 47-64
  • 194 Powolny A, Xu J, Loo G. Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53. Int J Biochem Cell Biol 2001; 33 (02) 193-203
  • 195 Ignacio Barrasa J, Olmo N, Pérez-Ramos P. et al. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells. Apoptosis 2011; 16 (10) 1054-1067
  • 196 Wei S, Ma X, Zhao Y. Mechanism of hydrophobic bile acid-induced hepatocyte injury and drug discovery. Front Pharmacol 2020; 11: 1084
  • 197 Lajczak-McGinley NK, Porru E, Fallon CM. et al. The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis. Physiol Rep 2020; 8 (12) e14456
  • 198 Jenkins GJ, Harries K, Doak SH. et al. The bile acid deoxycholic acid (DCA) at neutral pH activates NF-kappaB and induces IL-8 expression in oesophageal cells in vitro. Carcinogenesis 2004; 25 (03) 317-323
  • 199 Mühlbauer M, Allard B, Bosserhoff AK. et al. Differential effects of deoxycholic acid and taurodeoxycholic acid on NF-kappa B signal transduction and IL-8 gene expression in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2004; 286 (06) G1000-G1008
  • 200 O'Dwyer AM, Lajczak NK, Keyes JA, Ward JB, Greene CM, Keely SJ. Ursodeoxycholic acid inhibits TNFα-induced IL-8 release from monocytes. Am J Physiol Gastrointest Liver Physiol 2016; 311 (02) G334-G341
  • 201 Kim SJ, Ko W-K, Jo M-J. et al. Anti-inflammatory effect of Tauroursodeoxycholic acid in RAW 264.7 macrophages, bone marrow-derived macrophages, BV2 microglial cells, and spinal cord injury. Sci Rep 2018; 8 (01) 3176
  • 202 Araki Y, Katoh T, Ogawa A. et al. Bile acid modulates transepithelial permeability via the generation of reactive oxygen species in the Caco-2 cell line. Free Radic Biol Med 2005; 39 (06) 769-780
  • 203 Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and gall: bile acids in regulation of intestinal epithelial function in health and disease. Physiol Rev 2018; 98 (04) 1983-2023
  • 204 Debruyne PR, Bruyneel EA, Li X, Zimber A, Gespach C, Mareel MM. The role of bile acids in carcinogenesis. Mutat Res 2001; 480-481: 359-369
  • 205 Bernstein C, Holubec H, Bhattacharyya AK. et al. Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol 2011; 85 (08) 863-871
  • 206 Dossa AY, Escobar O, Golden J, Frey MR, Ford HR, Gayer CP. Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling. Am J Physiol Gastrointest Liver Physiol 2016; 310 (02) G81-G92
  • 207 Ijssennagger N, van Rooijen KS, Magnúsdóttir S. et al. Ablation of liver Fxr results in an increased colonic mucus barrier in mice. JHEP Rep 2021; 3 (05) 100344
  • 208 Mouzaki M, Wang AY, Bandsma R. et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS One 2016; 11 (05) e0151829
  • 209 Gupta B, Liu Y, Chopyk DM. et al. Western diet-induced increase in colonic bile acids compromises epithelial barrier in nonalcoholic steatohepatitis. FASEB J 2020; 34 (05) 7089-7102
  • 210 Kitahara M, Takamine F, Imamura T, Benno Y. Assignment of Eubacterium sp. VPI 12708 and related strains with high bile acid 7alpha-dehydroxylating activity to Clostridium scindens and proposal of Clostridium hylemonae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2000; 50 (Pt 3): 971-978
  • 211 Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006; 47 (02) 241-259
  • 212 Narushima S, Ito K, Kuruma K, Uchida K. Composition of cecal bile acids in ex-germfree mice inoculated with human intestinal bacteria. Lipids 2000; 35 (06) 639-644
  • 213 Sayin SI, Wahlström A, Felin J. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17 (02) 225-235
  • 214 Molinero N, Ruiz L, Sánchez B, Margolles A, Delgado S. Intestinal bacteria interplay with bile and cholesterol metabolism: implications on host physiology. Front Physiol 2019; 10: 185
  • 215 Kessoku T, Imajo K, Kobayashi T. et al. Lubiprostone in patients with non-alcoholic fatty liver disease: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Gastroenterol Hepatol 2020; 5 (11) 996-1007