Semin Musculoskelet Radiol 2022; 26(04): 439-452
DOI: 10.1055/s-0042-1748914
Review Article

The Great Mimickers of Spinal Pathology

Nadja A. Farshad-Amacker
1   Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
,
1   Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
› Author Affiliations

Abstract

Back pain is one of the leading causes of health costs worldwide, particularly because of the further increased aging population. After clinical examination, spinal imaging is of utmost importance in many patients to reach the correct diagnosis. There are many imaging pitfalls and mimickers of spinal pathology on radiographs, magnetic resonance imaging, and computed tomography. These mimickers may lead to a misdiagnosis or a further imaging work-up if they are not recognized and thus lead to unnecessary examinations and increased health care costs. In this review we present the common mimickers of spinal pathology and describe normal variations when reading imaging studies of the spine.



Publication History

Article published online:
14 September 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Volpe A, Erra M, Risi C, Casella V, Cioffi A, Fenza G. “Split atlas” in a trauma and nontrauma patient: two different case reports for a rare congenital malformation. Radiol Case Rep 2020; 16 (03) 585-588
  • 2 Naji MF, Bhat R. The typical appearance of the inferior accessory ossicle of the anterior arch of the atlas. Surg Radiol Anat 2009; 31 (01) 69-71
  • 3 Kang T, Park SY, Lee SH, Park JH. Acute calcific tendinitis of the longus colli. Pain Med 2020; 21 (08) 1706-1708
  • 4 Ko-Keeney E, Fornelli R. Acute calcific tendinitis of the longus colli: not all retropharyngeal fluid is an abscess. Ear Nose Throat J 2022; 101 (02) 78-80
  • 5 Mousny M, Saint-Martin C, Danse E, Rombouts JJ. Unusual upper cervical fracture in a 1-year-old girl. J Pediatr Orthop 2001; 21 (05) 590-593
  • 6 Hedequist DJ, Mo AZ. Os odontoideum in children. J Am Acad Orthop Surg 2020; 28 (03) e100-e107
  • 7 Fielding JW, Hensinger RN, Hawkins RJ. Os odontoideum. J Bone Joint Surg Am 1980; 62 (03) 376-383
  • 8 Menezes AH. Pathogenesis, dynamics, and management of os odontoideum. Neurosurg Focus 1999; 6 (06) E4
  • 9 Bajaj M, Jangid H, Vats A, Meena M. Case report: Congenital absence of the dens. Indian J Radiol Imaging 2010; 20 (02) 109-111
  • 10 Oppenheimer A. Supernumerary ossicle at the isthmus of the neural arch. Radiology 1942; 39 (01) 98-100
  • 11 Wang ZL, Yu S, Sether LA, Haughton VM. Incidence of unfused ossicles in the lumbar facet joints: CT, MR, and cryomicrotomy study. J Comput Assist Tomogr 1989; 13 (04) 594-597
  • 12 Başara I, Altay C, Gezer S, Balcı A. Evaluation of an unusual ossicle by multi-detector computed tomography: Oppenheimer's ossicle. Acta Orthop Traumatol Turc 2015; 49 (03) 331-333
  • 13 Batchala PP, Nepal P, Wankhar B, Wilder R, Lancaster L. Symptomatic Oppenheimer ossicle: a rare mimic of pars interarticularis fracture. Clin Imaging 2020; 66: 1-6
  • 14 Pushpa BT, Aiyer SN, Kannan M, Maheswaran A, Rajasekaran S. Oppenheimer's ossicles in the lumbar spine—a rare cause of lumbar canal stenosis. J Orthop 2018; 15 (02) 343-344
  • 15 Pfirrmann CWA, Resnick D. Schmorl nodes of the thoracic and lumbar spine: radiographic-pathologic study of prevalence, characterization, and correlation with degenerative changes of 1,650 spinal levels in 100 cadavers. Radiology 2001; 219 (02) 368-374
  • 16 Hamanishi C, Kawabata T, Yosii T, Tanaka S. Schmorl's nodes on magnetic resonance imaging. Their incidence and clinical relevance. Spine 1994; 19 (04) 450-453
  • 17 Kyere KA, Than KD, Wang AC. et al. Schmorl's nodes. Eur Spine J 2012; 21 (11) 2115-2121
  • 18 Hilton RC, Ball J, Benn RT. Vertebral end-plate lesions (Schmorl's nodes) in the dorsolumbar spine. Ann Rheum Dis 1976; 35 (02) 127-132
  • 19 Farshad-Amacker NA, Hughes A, Herzog RJ, Seifert B, Farshad M. The intervertebral disc, the endplates and the vertebral bone marrow as a unit in the process of degeneration. Eur Radiol 2017; 27 (06) 2507-2520
  • 20 Swischuk LE, John SD, Allbery S. Disk degenerative disease in childhood: Scheuermann's disease, Schmorl's nodes, and the limbus vertebra: MRI findings in 12 patients. Pediatr Radiol 1998; 28 (05) 334-338
  • 21 Zhang W, Kaplan SL, Servaes S, Zhuang H. Limbus vertebra on bone scintigraphy in a pediatric patient. Clin Nucl Med 2015; 40 (11) 915-916
  • 22 Frikha R. Klippel-Feil syndrome: a review of the literature. Clin Dysmorphol 2020; 29 (01) 35-37
  • 23 Gruber J, Saleh A, Bakhsh W, Rubery PT, Mesfin A. The prevalence of Klippel-Feil syndrome: a computed tomography-based analysis of 2,917 patients. Spine Deform 2018; 6 (04) 448-453
  • 24 Pizzutillo PD, Woods M, Nicholson L, MacEwen GD. Risk factors in Klippel-Feil syndrome. Spine 1994; 19 (18) 2110-2116
  • 25 Samartzis D, Kalluri P, Herman J, Lubicky JP, Shen FH. 2008 Young Investigator Award: The role of congenitally fused cervical segments upon the space available for the cord and associated symptoms in Klippel-Feil patients. Spine 2008; 33 (13) 1442-1450
  • 26 Samartzis DD, Herman J, Lubicky JP, Shen FH. Classification of congenitally fused cervical patterns in Klippel-Feil patients: epidemiology and role in the development of cervical spine-related symptoms. Spine 2006; 31 (21) E798-E804
  • 27 Nouri A, Patel K, Evans H. et al. Demographics, presentation and symptoms of patients with Klippel-Feil syndrome: analysis of a global patient-reported registry. Eur Spine J 2019; 28 (10) 2257-2265
  • 28 Castellvi AE, Goldstein LA, Chan DP. Lumbosacral transitional vertebrae and their relationship with lumbar extradural defects. Spine 1984; 9 (05) 493-495
  • 29 Farshad M, Aichmair A, Hughes AP, Herzog RJ, Farshad-Amacker NA. A reliable measurement for identifying a lumbosacral transitional vertebra with a solid bony bridge on a single-slice midsagittal MRI or plain lateral radiograph. Bone Joint J 2013; 95-B (11) 1533-1537
  • 30 Farshad-Amacker NA, Lurie B, Herzog RJ, Farshad M. Interreader and intermodality reliability of standard anteroposterior radiograph and magnetic resonance imaging in detection and classification of lumbosacral transitional vertebra. Spine J 2014; 14 (08) 1470-1475
  • 31 Farshad-Amacker NA, Lurie B, Herzog RJ, Farshad M. Is the iliolumbar ligament a reliable identifier of the L5 vertebra in lumbosacral transitional anomalies?. Eur Radiol 2014; 24 (10) 2623-2630
  • 32 Farshad-Amacker NA, Aichmair A, Herzog RJ, Farshad M. Merits of different anatomical landmarks for correct numbering of the lumbar vertebrae in lumbosacral transitional anomalies. Eur Spine J 2015; 24 (03) 600-608
  • 33 Akbar JJ, Weiss KL, Saafir MA, Weiss JL. Rapid MRI detection of vertebral numeric variation. AJR Am J Roentgenol 2010; 195 (02) 465-466
  • 34 Malanga GA, Cooke PM. Segmental anomaly leading to wrong level disc surgery in cauda equina syndrome. Pain Physician 2004; 7 (01) 107-110
  • 35 Shah M, Halalmeh DR, Sandio A, Tubbs RS, Moisi MD. Anatomical variations that can lead to spine surgery at the wrong level: Part III Lumbosacral spine. Cureus 2020; 12 (07) e9433
  • 36 Quinlan JF, Duke D, Eustace S. Bertolotti's syndrome. A cause of back pain in young people. J Bone Joint Surg Br 2006; 88 (09) 1183-1186
  • 37 Nardo L, Alizai H, Virayavanich W. et al. Lumbosacral transitional vertebrae: association with low back pain. Radiology 2012; 265 (02) 497-503
  • 38 Farshad-Amacker NA, Herzog RJ, Hughes AP, Aichmair A, Farshad M. Associations between lumbosacral transitional anatomy types and degeneration at the transitional and adjacent segments. Spine J 2015; 15 (06) 1210-1216
  • 39 Porter NA, Lalam RK, Tins BJ, Tyrrell PNM, Singh J, Cassar-Pullicino VN. Prevalence of extraforaminal nerve root compression below lumbosacral transitional vertebrae. Skeletal Radiol 2014; 43 (01) 55-60
  • 40 Kanematsu R, Hanakita J, Takahashi T, Minami M, Tomita Y, Honda F. Extraforaminal entrapment of the fifth lumbar spinal nerve by nearthrosis in patients with lumbosacral transitional vertebrae. Eur Spine J 2020; 29 (09) 2215-2221
  • 41 Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 2000; 215 (03) 835-840
  • 42 Maraghelli D, Brandi ML, Cerinic MM, Peired AJ, Colagrande S. Edema-like marrow signal intensity: a narrative review with a pictorial essay. Skeletal Radiol 2020; 75B (07) 175-19
  • 43 Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001; 26 (17) 1873-1878
  • 44 Gaudino S, Martucci M, Colantonio R. et al. A systematic approach to vertebral hemangioma. Skeletal Radiol 2015; 44 (01) 25-36
  • 45 Li X, Guan L, Zilundu PLM. et al. The applied anatomy and clinical significance of the proximal, V1 segment of vertebral artery. Folia Morphol (Warsz) 2019; 78 (04) 710-719
  • 46 Paksoy Y, Levendoglu FD, Ogün CÖ, Ustün ME, Ogün TC. Vertebral artery loop formation: a frequent cause of cervicobrachial pain. Spine 2003; 28 (11) 1183-1188
  • 47 Kim HS, Lee JH, Cheh G, Lee S-H. Cervical radiculopathy caused by vertebral artery loop formation : a case report and review of the literature. J Korean Neurosurg Soc 2010; 48 (05) 465-468
  • 48 Medani K, Lawandy S, Schrot R, Binongo JN, Kim KD, Panchal RR. Surgical management of symptomatic Tarlov cysts: cyst fenestration and nerve root imbrication—a single institutional experience. J Spine Surg 2019; 5 (04) 496-503
  • 49 Paulsen RD, Call GA, Murtagh FR. Prevalence and percutaneous drainage of cysts of the sacral nerve root sheath (Tarlov cysts). AJNR Am J Neuroradiol 1994; 15 (02) 293-297 ; discussion 298–299
  • 50 Langdown AJ, Grundy JRB, Birch NC. The clinical relevance of Tarlov cysts. J Spinal Disord Tech 2005; 18 (01) 29-33
  • 51 Holt S, Yates PO. Cervical nerve root “cysts.”. Brain 1964; 87 (03) 481-490
  • 52 Isono M, Hori S, Konishi Y. et al. Ehlers-Danlos syndrome associated with multiple spinal meningeal cysts—case report. Neurol Med Chir (Tokyo) 1999; 39 (05) 380-383
  • 53 Doi H, Sakurai S, Ida M, Sora S, Asamoto S, Sugiyama H. A case of sacral meningeal cyst with Marfan syndrome. [in Japanese]. No Shinkei Geka 1999; 27 (09) 847-850
  • 54 Aşık M, Tufan F, Akpınar TS. et al. Frequency of nerve root sleeve cysts in autosomal dominant polycystic kidney disease. Balkan Med J 2016; 33 (06) 652-656
  • 55 Tarlov IM. Spinal perineurial and meningeal cysts. J Neurol Neurosurg Psychiatry 1970; 33 (06) 833-843
  • 56 Murphy K, Oaklander AL, Elias G, Kathuria S, Long DM. Treatment of 213 patients with symptomatic Tarlov cysts by CT-guided percutaneous injection of fibrin sealant. AJNR Am J Neuroradiol 2016; 37 (02) 373-379
  • 57 Sugawara T, Higashiyama N, Tamura S, Endo T, Shimizu H. Novel wrapping surgery for symptomatic sacral perineural cysts. J Neurosurg Spine 2021; October 1 (Epub ahead of print)
  • 58 Liu B, Wang Z, Lin G, Zhang J. Radiculoplasty with reconstruction using 3D-printed artificial dura mater for the treatment of symptomatic sacral canal cysts: two case reports. Medicine (Baltimore) 2018; 97 (49) e13289
  • 59 Patel MR, Louie W, Rachlin J. Percutaneous fibrin glue therapy of meningeal cysts of the sacral spine. AJR Am J Roentgenol 1997; 168 (02) 367-370
  • 60 Elsawaf A, Awad TE, Fesal SS. Surgical excision of symptomatic sacral perineurial Tarlov cyst: case series and review of the literature. Eur Spine J 2016; 25 (11) 3385-3392
  • 61 Kadish LJ, Simmons EH. Anomalies of the lumbosacral nerve roots. An anatomical investigation and myelographic study. J Bone Joint Surg Br 1984; 66 (03) 411-416
  • 62 Cannon BW, Hunter SE, Picaza JA. Nerve-root anomalies in lumbar-disc surgery. J Neurosurg 1962; 19 (03) 208-214
  • 63 Trimba R, Spivak JM, Bendo JA. Conjoined nerve roots of the lumbar spine. Spine J 2012; 12 (06) 515-524
  • 64 Brown E, Matthes JC, Bazan III C, Jinkins JR. Prevalence of incidental intraspinal lipoma of the lumbosacral spine as determined by MRI. Spine 1994; 19 (07) 833-836
  • 65 Al-Omari MH, Eloqayli HM, Qudseih HM, Al-Shinag MK. Isolated lipoma of filum terminale in adults: MRI findings and clinical correlation. J Med Imaging Radiat Oncol 2011; 55 (03) 286-290
  • 66 Raghavan N, Barkovich AJ, Edwards M, Norman D. MR imaging in the tethered spinal cord syndrome. AJR Am J Roentgenol 1989; 152 (04) 843-852
  • 67 Pinto FCG, Fontes Rde V, Leonhardt Mde C, Amodio DT, Porro FF, Machado J. Anatomic study of the filum terminale and its correlations with the tethered cord syndrome. Neurosurgery 2002; 51 (03) 725-729 ; discussion 729–730
  • 68 Coleman LT, Zimmerman RA, Rorke LB. Ventriculus terminalis of the conus medullaris: MR findings in children. AJNR Am J Neuroradiol 1995; 16 (07) 1421-1426
  • 69 Kernohan JW. The ventriculus terminalis: its growth and development. J Comp Neurol 1924; 38 (01) 107-125
  • 70 Chang EY, Lim WY, Wolfson T. et al. Frequency of atlantoaxial calcium pyrophosphate dihydrate deposition at CT. Radiology 2013; 269 (02) 519-524
  • 71 Matsumura M, Hara S. Images in clinical medicine. Crowned dens syndrome. N Engl J Med 2012; 367 (23) e34
  • 72 Carragee EJ, Paragioudakis SJ, Khurana S. 2000 Volvo Award winner in clinical studies: Lumbar high-intensity zone and discography in subjects without low back problems. Spine 2000; 25 (23) 2987-2992
  • 73 Farshad-Amacker NA, Hughes AP, Aichmair A, Herzog RJ, Farshad M. Is an annular tear a predictor for accelerated disc degeneration?. Eur Spine J 2014; 23 (09) 1825-1829
  • 74 Ross JS, Modic MT, Masaryk TJ. Tears of the anulus fibrosus: assessment with Gd-DTPA-enhanced MR imaging. AJR Am J Roentgenol 1990; 154 (01) 159-162
  • 75 Hueftle MG, Modic MT, Ross JS. et al. Lumbar spine: postoperative MR imaging with Gd-DTPA. Radiology 1988; 167 (03) 817-824
  • 76 Altorfer FCS, Sutter R, Farshad M, Spirig JM, Farshad-Amacker NA. MRI appearance of adjunct surgical material used in spine surgery. Spine J 2022; 22 (01) 75-83
  • 77 Stein JM, Eskey CJ, Mamourian AC. Mass effect in the thoracic spine from remnant bone wax: an MR imaging pitfall. AJNR Am J Neuroradiol 2010; 31 (05) 844-846
  • 78 Lauvin M-A, Zemmoura I, Cazals X, Cottier J-P. Delayed cauda equina compression after spinal dura repair with BioGlue: magnetic resonance imaging and computed tomography aspects of two cases of “glue-oma.”. Spine J 2015; 15 (01) e5-e8
  • 79 Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. AJR Am J Roentgenol 2011; 197 (03) 547-555
  • 80 Fritz J, Lurie B, Miller TT, Potter HG. MR imaging of hip arthroplasty implants. Radiographics 2014; 34 (04) E106-E132
  • 81 Jungmann PM, Agten CA, Pfirrmann CW, Sutter R. Advances in MRI around metal. J Magn Reson Imaging 2017; 46 (04) 972-991
  • 82 Do T, Sutter R, Skornitzke S, Weber M-A. CT and MRI techniques for imaging around orthopedic hardware. Röfo Fortschr Geb Röntgenstr Nuklearmed 2018; 190 (01) 31-41
  • 83 Fritz J, Lurie B, Miller TT. Imaging of hip arthroplasty. Semin Musculoskelet Radiol 2013; 17 (03) 316-327
  • 84 Filli L, Jud L, Luechinger R. et al. Material-dependent implant artifact reduction using SEMAC-VAT and MAVRIC: a prospective MRI phantom study. Invest Radiol 2017; 52 (06) 381-387
  • 85 Spirig JM, Sutter R, Götschi T, Farshad-Amacker NA, Farshad M. Value of standard radiographs, computed tomography, and magnetic resonance imaging of the lumbar spine in detection of intraoperatively confirmed pedicle screw loosening—a prospective clinical trial. Spine J 2019; 19 (03) 461-468