Semin Neurol 2022; 42(06): 695-707
DOI: 10.1055/s-0042-1760100
Review Article

Challenging Cases in Neuroimmunology

Anna A. Shah*
1   Department of Neurology, Rocky Mountain MS Center, University of Colorado School of Medicine, Aurora, Colorado
,
Andrew B. Wolf*
1   Department of Neurology, Rocky Mountain MS Center, University of Colorado School of Medicine, Aurora, Colorado
,
Anthony Declusin
1   Department of Neurology, Rocky Mountain MS Center, University of Colorado School of Medicine, Aurora, Colorado
,
Kyle Coleman
1   Department of Neurology, Rocky Mountain MS Center, University of Colorado School of Medicine, Aurora, Colorado
2   Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
,
Ryan Kammeyer
1   Department of Neurology, Rocky Mountain MS Center, University of Colorado School of Medicine, Aurora, Colorado
,
Baber Khan
1   Department of Neurology, Rocky Mountain MS Center, University of Colorado School of Medicine, Aurora, Colorado
3   Riverhills Neuroscience, Cincinnati, Ohio
,
John R. Corboy
1   Department of Neurology, Rocky Mountain MS Center, University of Colorado School of Medicine, Aurora, Colorado
› Author Affiliations

Abstract

Neuroimmunology is rapidly evolving field extending from well-known, but incompletely understood conditions like multiple sclerosis, to novel antibody-mediated disorders, of which dozens have been described in the past 10 years. The ongoing expansion in knowledge needed to effectively diagnose and treat these patients presents myriad challenges for clinicians. Here, we discuss six informative cases from our institution. By highlighting these challenging cases, we hope to instill fundamental points on the nuances of diagnosis and management for conditions including tumefactive multiple sclerosis, antibody-mediated encephalitis, antiphospholipid antibody syndrome, neuromyelitis optica, and myelin oligodendrocyte glycoprotein IgG–associated disease.

* Equal contributions.




Publication History

Article published online:
23 January 2023

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Lucchinetti CF, Gavrilova RH, Metz I. et al. Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis. Brain 2008; 131 (Pt 7): 1759-1775
  • 2 Lin X, Yu WY, Liauw L. et al. Clinicoradiologic features distinguish tumefactive multiple sclerosis from CNS neoplasms. Neurol Clin Pract 2017; 7 (01) 53-64
  • 3 Abou Zeid N, Pirko I, Erickson B. et al. Diffusion-weighted imaging characteristics of biopsy-proven demyelinating brain lesions. Neurology 2012; 78 (21) 1655-1662
  • 4 Greenfield AL, Hauser SL. B-cell therapy for multiple sclerosis: entering an era. Ann Neurol 2018; 83 (01) 13-26
  • 5 Bernitsas E, Khan O, Razmjou S. et al. Cerebrospinal fluid humoral immunity in the differential diagnosis of multiple sclerosis. PLoS One 2017; 12 (07) e0181431
  • 6 Brod SA, Lindsey JW, Nelson F. Tumefactive demyelination: clinical outcomes, lesion evolution and treatments. Mult Scler J Exp Transl Clin 2019; 5 (02) 2055217319855755
  • 7 Dalmau J, Gleichman AJ, Hughes EG. et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008; 7 (12) 1091-1098
  • 8 Hermetter C, Fazekas F, Hochmeister S. Systematic review: syndromes, early diagnosis, and treatment in autoimmune encephalitis. Front Neurol 2018; 9: 706
  • 9 Rosenfeld MR, Titulaer MJ, Dalmau J. Paraneoplastic syndromes and autoimmune encephalitis: five new things. Neurol Clin Pract 2012; 2 (03) 215-223
  • 10 van Sonderen A, Petit-Pedrol M, Dalmau J, Titulaer MJ. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol 2017; 13 (05) 290-301
  • 11 Griffith SP, Malpas CB, Alpitsis R, O'Brien TJ, Monif M. The neuropsychological spectrum of anti-LGI1 antibody mediated autoimmune encephalitis. J Neuroimmunol 2020; 345: 577271
  • 12 Aurangzeb S, Symmonds M, Knight RK, Kennett R, Wehner T, Irani SR. LGI1-antibody encephalitis is characterised by frequent, multifocal clinical and subclinical seizures. Seizure 2017; 50: 14-17
  • 13 Bost C, Pascual O, Honnorat J. Autoimmune encephalitis in psychiatric institutions: current perspectives. Neuropsychiatr Dis Treat 2016; 12: 2775-2787
  • 14 Garza M, Piquet AL. Update in autoimmune movement disorders: newly described antigen targets in autoimmune and paraneoplastic cerebellar ataxia. Front Neurol 2021; 12: 683048
  • 15 Graus F, Delattre JY, Antoine JC. et al. Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry 2004; 75 (08) 1135-1140
  • 16 Rickards H, Jacob S, Lennox B, Nicholson T. Autoimmune encephalitis: a potentially treatable cause of mental disorder. Adv Psychiatr Treat 2014; 20 (02) 92-100 . Available at: https://doi.org/10.1192/apt.bp.113.011304
  • 17 Dalmau J, Graus F, Villarejo A. et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004; 127 (Pt 8): 1831-1844
  • 18 Sutton I, Winer J, Rowlands D, Dalmau J. Limbic encephalitis and antibodies to Ma2: a paraneoplastic presentation of breast cancer. J Neurol Neurosurg Psychiatry 2000; 69 (02) 266-268
  • 19 Abboud H, Probasco JC, Irani S. et al; Autoimmune Encephalitis Alliance Clinicians Network. Autoimmune encephalitis: proposed best practice recommendations for diagnosis and acute management. J Neurol Neurosurg Psychiatry 2021; 92 (07) 757-768
  • 20 Blumenthal DT, Salzman KL, Digre KB, Jensen RL, Dunson WA, Dalmau J. Early pathologic findings and long-term improvement in anti-Ma2-associated encephalitis. Neurology 2006; 67 (01) 146-149
  • 21 Mathew RM, Vandenberghe R, Garcia-Merino A. et al. Orchiectomy for suspected microscopic tumor in patients with anti-Ma2-associated encephalitis. Neurology 2007; 68 (12) 900-905
  • 22 McKeon A, Pittock SJ. Paraneoplastic encephalomyelopathies: pathology and mechanisms. Acta Neuropathol 2011; 122 (04) 381-400
  • 23 Baizabal-Carvallo JF, Cardoso F. Chorea in children: etiology, diagnostic approach and management. J Neural Transm (Vienna) 2020; 127 (10) 1323-1342
  • 24 Peluso S, Antenora A, De Rosa A. et al. Antiphospholipid-related chorea. Front Neurol 2012; 3: 150
  • 25 Webb RH, Grant C, Harnden A. Acute rheumatic fever. BMJ 2015; 351: h3443
  • 26 Shet A, Kaplan EL. Clinical use and interpretation of group A streptococcal antibody tests: a practical approach for the pediatrician or primary care physician. Pediatr Infect Dis J 2002; 21 (05) 420-426 , quiz 427–430
  • 27 Cardoso F. Sydenham's Chorea. Vol 100. 1st ed. Elsevier B.V.; 2011. DOI: 10.1016/B978-0-444-52014-2.00014-8
  • 28 Garcia D, Erkan D. Diagnosis and management of the antiphospholipid syndrome. N Engl J Med 2018; 378 (21) 2010-2021
  • 29 Hilário MOE, Len CA, Roja SC, Terreri MT, Almeida G, Andrade LEC. Frequency of antinuclear antibodies in healthy children and adolescents. Clin Pediatr (Phila) 2004; 43 (07) 637-642
  • 30 Malleson PN, Mackinnon MJ, Sailer-Hoeck M, Spencer CH. Review for the generalist: the antinuclear antibody test in children - When to use it and what to do with a positive titer. Pediatr Rheumatol Online J 2010; 8: 27
  • 31 Armangue T, Titulaer MJ, Málaga I. et al; Spanish Anti-N-Methyl-D-Aspartate Receptor (NMDAR) Encephalitis Work Group. Pediatric anti-N-methyl-D-aspartate receptor encephalitis-clinical analysis and novel findings in a series of 20 patients. J Pediatr 2013; 162 (04) 850-856 .e2
  • 32 Gresa-Arribas N, Titulaer MJ, Torrents A. et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol 2014; 13 (02) 167-177
  • 33 López-Chiriboga AS, Majed M, Fryer J. et al. Association of MOG-IgG serostatus with relapse after acute disseminated encephalomyelitis and proposed diagnostic criteria for MOG-IgG-associated disorders. JAMA Neurol 2018; 75 (11) 1355-1363
  • 34 RED BOOK® on Micromedex® (electronic version). IBM Watson Health, Greenwood Village, Colorado, USA. Accessed August 16, 2021 at: https://www-micromedexsolutions-com.proxy.hsl.ucdenver.edu/
  • 35 Brayo P, Shah S. MOG-IgG associated disease (MOG-AD) in adults. Curr Treat Options Neurol 2021; 23
  • 36 Sechi E, Buciuc M, Pittock SJ. et al. Positive predictive value of myelin oligodendrocyte glycoprotein autoantibody testing. JAMA Neurol 2021; 78 (06) 741-746
  • 37 Cobo-Calvo Á, d'Indy H, Ruiz A. et al. Frequency of myelin oligodendrocyte glycoprotein antibody in multiple sclerosis: a multicenter cross-sectional study. Neurol Neuroimmunol Neuroinflamm 2019; 7 (02) 7
  • 38 Cobo-Calvo A, Ruiz A, Rollot F. et al; NOMADMUS, KidBioSEP, and OFSEP Study Groups. Clinical features and risk of relapse in children and adults with myelin oligodendrocyte glycoprotein antibody-associated disease. Ann Neurol 2021; 89 (01) 30-41
  • 39 Epstein SE, Levin S, Onomichi K. et al. Myelin oligodendrocyte glycoprotein (MOG) antibody-mediated disease: the difficulty of predicting relapses. Mult Scler Relat Disord 2021; 56: 103229
  • 40 Chen JJ, Flanagan EP, Bhatti MT. et al. Steroid-sparing maintenance immunotherapy for MOG-IgG associated disorder. Neurology 2020; 95 (02) e111-e120
  • 41 Whittam DH, Cobo-Calvo A, Lopez-Chiriboga AS. et al. Treatment of MOG-IgG-associated disorder with rituximab: an international study of 121 patients. Mult Scler Relat Disord 2020; 44: 102251
  • 42 Peters J, Alhasan S, Vogels CBF, Grubaugh ND, Farhadian S, Longbrake EE. MOG-associated encephalitis following SARS-COV-2 infection. Mult Scler Relat Disord 2021; 50: 102857
  • 43 Armangue T, Moris G, Cantarín-Extremera V. et al; Spanish Prospective Multicentric Study of Autoimmunity in Herpes Simplex Encephalitis. Autoimmune post-herpes simplex encephalitis of adults and teenagers. Neurology 2015; 85 (20) 1736-1743
  • 44 Wingerchuk DM, Banwell B, Bennett JL. et al; International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85 (02) 177-189
  • 45 Wingerchuk DM, Hogancamp WF, O'Brien PC, Weinshenker BG. The clinical course of neuromyelitis optica (Devic's syndrome). Neurology 1999; 53 (05) 1107-1114
  • 46 Waters PJ, Pittock SJ, Bennett JL, Jarius S, Weinshenker BG, Wingerchuk DM. Evaluation of aquaporin-4 antibody assays. Clin Exp Neuroimmunol 2014; 5 (03) 290-303
  • 47 Bonnan M, Valentino R, Debeugny S. et al. Short delay to initiate plasma exchange is the strongest predictor of outcome in severe attacks of NMO spectrum disorders. J Neurol Neurosurg Psychiatry 2018; 89 (04) 346-351
  • 48 Brod SA. Review of approved NMO therapies based on mechanism of action, efficacy and long-term effects. Mult Scler Relat Disord 2020; 46: 102538
  • 49 Forsthuber TG, Cimbora DM, Ratchford JN, Katz E, Stüve O. B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets. Ther Adv Neurol Disord 2018; 11: 1756286418761697
  • 50 Horton L, Bennett JL. Acute management of optic neuritis: an evolving paradigm. J Neuroophthalmol 2018; 38 (03) 358-367
  • 51 Shahriari M, Sotirchos ES, Newsome SD, Yousem DM. MOGAD: how it differs from and resembles other neuroinflammatory disorders. AJR Am J Roentgenol 2021; 216 (04) 1031-1039
  • 52 Tahara M, Oeda T, Okada K. et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2020; 19 (04) 298-306
  • 53 Mealy MA, Wingerchuk DM, Palace J, Greenberg BM, Levy M. Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: multicenter study of treatment efficacy. JAMA Neurol 2014; 71 (03) 324-330