Subscribe to RSS
DOI: 10.1055/s-0043-104700
Role of Phosphodiesterases on the Function of Aryl Hydrocarbon Receptor-Interacting Protein (AIP) in the Pituitary Gland and on the Evaluation of AIP Gene Variants

Abstract
Familial isolated pituitary adenoma (FIPA) is caused in about 20% of cases by loss-of-function germline mutations in the AIP gene. Patients harboring AIP mutations usually present with somatotropinomas resulting either in gigantism or young-onset acromegaly. AIP encodes for a co-chaperone protein endowed with tumor suppressor properties in somatotroph cells. Among other mechanisms proposed to explain this function, a regulatory effect over the 3′,5′-cyclic adenosine monophosphate (cAMP) signaling pathway seems to play a prominent role. In this setting, the well-known interaction between AIP and 2 different isoforms of phosphodiesterases (PDEs), PDE2A3 and PDE4A5, is of particular interest. While the interaction with over-expressed AIP does not seem to affect PDE2A3 function, the reported effect on PDE4A5 is, in contrast, reduced enzymatic activity. In this review, we explore the possible implications of these molecular interactions for the function of somatotroph cells. In particular, we discuss how both PDEs and AIP could act as negative regulators of the cAMP pathway in the pituitary, probably both by shared and independent mechanisms. Moreover, we describe how the evaluation of the AIP-PDE4A5 interaction has proven to be a useful tool for testing AIP mutations, complementing other in silico, in vitro, and in vivo analyses. Improved assessment of the pathogenicity of AIP mutations is indeed paramount to provide adequate guidance for genetic counseling and clinical screening in AIP mutation carriers, which can lead to prospective diagnosis of pituitary adenomas.
Publication History
Received: 28 November 2016
Accepted: 22 February 2017
Article published online:
20 April 2017
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
References
- 1
Daly AF,
Jaffrain-Rea ML,
Ciccarelli A,
Valdes-Socin H,
Rohmer V,
Tamburrano G,
Borson-Chazot C,
Estour B,
Ciccarelli E,
Brue T,
Ferolla P,
Emy P,
Colao A,
De ME,
Lecomte P,
Penfornis F,
Delemer B,
Bertherat J,
Wemeau JL,
De HW,
Archambeaud F,
Stevenaert A,
Calender A,
Murat A,
Cavagnini F,
Beckers A.
Clinical characterization of familial isolated pituitary adenomas. J Clin Endocrinol
Metab 2006; 91: 3316-3323
MissingFormLabel
- 2
Vierimaa O,
Georgitsi M,
Lehtonen R,
Vahteristo P,
Kokko A,
Raitila A,
Tuppurainen K,
Ebeling TM,
Salmela PI,
Paschke R,
Gundogdu S,
De ME,
Makinen MJ,
Launonen V,
Karhu A,
Aaltonen LA.
Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science
2006; 312: 1228-1230
MissingFormLabel
- 3
Daly AF,
Tichomirowa MA,
Petrossians P,
Heliovaara E,
Jaffrain-Rea ML,
Barlier A,
Naves LA,
Ebeling T,
Karhu A,
Raappana A,
Cazabat L,
De ME,
Montanana CF,
Raverot G,
Weil RJ,
Sane T,
Maiter D,
Neggers S,
Yaneva M,
Tabarin A,
Verrua E,
Eloranta E,
Murat A,
Vierimaa O,
Salmela PI,
Emy P,
Toledo RA,
Sabate MI,
Villa C,
Popelier M,
Salvatori R,
Jennings J,
Longas AF,
Labarta Aizpun JI,
Georgitsi M,
Paschke R,
Ronchi C,
Valimaki M,
Saloranta C,
De HW,
Cozzi R,
Guitelman M,
Magri F,
Lagonigro MS,
Halaby G,
Corman V,
Hagelstein MT,
Vanbellinghen JF,
Barra GB,
Gimenez-Roqueplo AP,
Cameron FJ,
Borson-Chazot F,
Holdaway I,
Toledo SP,
Stalla GK,
Spada A,
Zacharieva S,
Bertherat J,
Brue T,
Bours V,
Chanson P,
Aaltonen LA,
Beckers A.
Clinical characteristics and therapeutic responses in patients with germ-line AIP
mutations and pituitary adenomas: an international collaborative study. J Clin Endocrinol
Metab 2010; 95: E373-E383
MissingFormLabel
- 4
Beckers A,
Aaltonen LA,
Daly AF,
Karhu A.
Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition
due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene.
Endocr Rev 2013; 34: 239-277
MissingFormLabel
- 5
Hernández-Ramírez LC,
Gabrovska P,
Dénes J,
Stals K,
Trivellin G,
Tilley D,
Ferraù F,
Evanson J,
Ellard S,
Grossman AB,
Roncaroli F,
Gadelha MR,
Consortium TIF
.
Korbonits M.
Landscape of familial isolated and young-onset pituitary adenomas: Prospective diagnosis
in AIP mutation carriers. J Clin Endocrinol Metab 2015; 100: E1242-E1254
MissingFormLabel
- 6
Trivellin G,
Daly AF,
Faucz FR,
Yuan B,
Rostomyan L,
Larco DO,
Schernthaner-Reiter MH,
Szarek E,
Leal LF,
Caberg JH,
Castermans E,
Villa C,
Dimopoulos A,
Chittiboina P,
Xekouki P,
Shah N,
Metzger D,
Lysy PA,
Ferrante E,
Strebkova N,
Mazerkina N,
Zatelli MC,
Lodish M,
Horvath A,
de Alexandre RB,
Manning AD,
Levy I,
Keil MF,
Sierra Mde L,
Palmeira L,
Coppieters W,
Georges M,
Naves LA,
Jamar M,
Bours V,
Wu TJ,
Choong CS,
Bertherat J,
Chanson P,
Kamenicky P,
Farrell WE,
Barlier A,
Quezado M,
Bjelobaba I,
Stojilkovic SS,
Wess J,
Costanzi S,
Liu P,
Lupski JR,
Beckers A,
Stratakis CA.
Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl
J Med 2014; 371: 2363-2374
MissingFormLabel
- 7
Beckers A,
Lodish M,
Giampaolo T,
Rostomyan L,
Lee M,
Faucz FR,
Yuan B,
Choong C,
Caberg JH,
Verrua E,
Naves LA,
Cheetham T,
Young J,
Lysy P,
Petrossians P,
Cotterill A,
Shah N,
Metzger D,
Castermans E,
Ambrosio MR,
Villa C,
Strebkova N,
Mazerkina N,
Gaillard S,
Barcelos BG,
Casulari LA,
Neggers S,
Salvatori R,
Jaffrain-Rea ML,
Zacharin M,
Lecumberri SB,
Zacharieva S,
Lim EM,
Mantovani G,
Zatelli MC,
Collins MT,
Bonneville JF,
Quezado M,
Chittiboina P,
Oldfield E,
Bours V,
Liu P,
de Herder WW,
Pellegata NS,
Lupski JR,
Daly AF,
Stratakis CA.
X-linked acrogigantism (X-LAG) syndrome: clinical profile and therapeutic responses.
Endocr Relat Cancer 2015; 22: 353-367
MissingFormLabel
- 8
Daly AF,
Yuan B,
Fina F,
Caberg JH,
Trivellin G,
Rostomyan L,
de Herder WW,
Naves LA,
Metzger D,
Cuny T,
Rabl W,
Shah N,
Jaffrain-Rea ML,
Zatelli MC,
Faucz FR,
Castermans E,
Nanni-Metellus I,
Lodish M,
Muhammad A,
Palmeira L,
Potorac I,
Mantovani G,
Neggers S,
Klein M,
Barlier A,
Liu P,
Ouafik L,
Bours V,
Lupski JR,
Stratakis CA,
Beckers A.
Somatic mosaicism underlies X-linked acrogigantism (XLAG) syndrome in sporadic male
subjects. Endocr Relat Cancer 2016; 23: 221-233
MissingFormLabel
- 9
Iacovazzo D,
Caswell R,
Bunce B,
Jose S,
Yuan B,
Hernández-Ramírez LC,
Kapur S,
Caimari F,
Evanson J,
Ferraù F,
Dang MN,
Gabrovska P,
Larkin SJ,
Ansorge O,
Rodd C,
Vance ML,
Ramírez-Rentería C,
Mercado M,
Goldstone AP,
Buchfelder M,
Burren CP,
Gurlek A,
Dutta P,
Choong CS,
Cheetham T,
Trivellin G,
Stratakis CA,
Lopes MB,
Grossman AB,
Trouillas J,
Lupski JR,
Ellard S,
Sampson JR,
Roncaroli F,
Korbonits M.
Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological
and genetic study. Acta Neuropathol Commun 2016; 4: 56
MissingFormLabel
- 10
Gordon RJ,
Bell J,
Chung WK,
David R,
Oberfield SE,
Wardlaw SL.
Childhood acromegaly due to X-linked acrogigantism: long term follow-up. Pituitary
2016; 19: 560-564
MissingFormLabel
- 11
Beckers A,
Fernandes D,
Fina F,
Novak M,
Abati A,
Rostomyan L,
Thiry A,
Ouafik L,
Pasture B,
Pinhasi R,
Daly AF.
Paleogenetic study of ancient DNA suggestive of X-Linked acrogigantism. Endocr Relat
Cancer 2017; 24: L17-L20
MissingFormLabel
- 12
Gadelha MR,
Prezant TR,
Une KN,
Glick RP,
Moskal SF,
Vaisman M,
Melmed S,
Kineman RD,
Frohman LA.
Loss of heterozygosity on chromosome 11q13 in two families with acromegaly/gigantism
is independent of mutations of the multiple endocrine neoplasia type I gene. J Clin
Endocrinol Metab 1999; 84: 249-256
MissingFormLabel
- 13
Gadelha MR,
Une KN,
Rohde K,
Vaisman M,
Kineman RD,
Frohman LA.
Isolated familial somatotropinomas: establishment of linkage to chromosome 11q13.1-11q13.3
and evidence for a potential second locus at chromosome 2p16-12. J Clin Endocrinol
Metab 2000; 85: 707-714
MissingFormLabel
- 14
Frohman LA.
Isolated familial somatotropinomas: clinical and genetic considerations. Trans Am
Clin Climatol Assoc 2003; 114: 165-177
MissingFormLabel
- 15
Xekouki P,
Mastroyiannis SA,
Avgeropoulos D,
de la Luz SM,
Trivellin G,
Gourgari EA,
Lyssikatos C,
Quezado M,
Patronas N,
Kanaka-Gantenbein C,
Chrousos GP,
Stratakis CA.
Familial pituitary apoplexy as the only presentation of a novel AIP mutation. Endocr
Relat Cancer 2013; 20: L11-L14
MissingFormLabel
- 16
Formosa R,
Xuereb-Anastasi A,
Vassallo J.
Aip regulates cAMP signalling and GH secretion in GH3 cells. Endocr Relat Cancer 2013;
20: 495-505
MissingFormLabel
- 17
Tuominen I,
Heliovaara E,
Raitila A,
Rautiainen MR,
Mehine M,
Katainen R,
Donner I,
Aittomaki V,
Lehtonen HJ,
Ahlsten M,
Kivipelto L,
Schalin-Jantti C,
Arola J,
Hautaniemi S,
Karhu A.
AIP inactivation leads to pituitary tumorigenesis through defective Galphai-cAMP signaling.
Oncogene 2015; 34: 1174-1184
MissingFormLabel
- 18 Ensembl. Gene: AIP ENSG00000110711. http://grch37.ensembl.org/Homo_sapiens/Gene/Summary?db
= core;g = ENSG00000110711;
r = 11:67250512-67258574 Access date: 17-10-2016
MissingFormLabel
- 19
Ma Q,
Whitlock Jr. JP.
A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide
repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin.
J Biol Chem 1997; 272: 8878-8884
MissingFormLabel
- 20
Carver LA,
LaPres JJ,
Jain S,
Dunham EE,
Bradfield CA.
Characterization of the Ah receptor-associated protein, ARA9. J Biol Chem 1998; 273:
33580-33587
MissingFormLabel
- 21
Morgan RM,
Hernández-Ramírez LC,
Trivellin G,
Zhou L,
Roe SM,
Korbonits M,
Prodromou C.
Structure of the TPR domain of AIP: Lack of client protein interaction with the C-terminal
alpha-7 helix of the TPR domain of AIP is sufficient for pituitary adenoma predisposition.
PLoS One 2012; 7: e53339
MissingFormLabel
- 22
Linnert M,
Haupt K,
Lin YJ,
Kissing S,
Paschke AK,
Fischer G,
Weiwad M,
Lucke C.
NMR assignments of the FKBP-type PPIase domain of the human aryl-hydrocarbon receptor-interacting
protein (AIP). Biomol NMR Assign 2012; 6: 209-212
MissingFormLabel
- 23
The Uniprot Consortium
.
UniProt: a hub for protein information (http://www.uniprot.org/). Nucleic Acids Res
2015; 43: D204-D212
MissingFormLabel
- 24 NCBI Gene. AIP aryl hydrocarbon receptor interacting protein [Homo sapiens (human)].http://www.ncbi.nlm.nih.gov/gene/9049#reference-
sequences Access date: 5-4-2015
MissingFormLabel
- 25
Dull AB,
Carlson DB,
Petrulis JR,
Perdew GH.
Characterization of the phosphorylation status of the hepatitis B virus X-associated
protein 2. Arch Biochem Biophys 2002; 406: 209-221
MissingFormLabel
- 26
Meyer BK,
Petrulis JR,
Perdew GH.
Aryl hydrocarbon (Ah) receptor levels are selectively modulated by hsp90-associated
immunophilin homolog XAP2. Cell Stress Chaperones 2000; 5: 243-254
MissingFormLabel
- 27
Kuzhandaivelu N,
Cong YS,
Inouye C,
Yang WM,
Seto E.
XAP2, a novel hepatitis B virus X-associated protein that inhibits X transactivation.
Nucleic Acids Res 1996; 24: 4741-4750
MissingFormLabel
- 28
Carver LA,
Bradfield CA.
Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin
homolog in vivo. J Biol Chem 1997; 272: 11452-11456
MissingFormLabel
- 29
Linnert M,
Lin YJ,
Manns A,
Haupt K,
Paschke AK,
Fischer G,
Weiwad M,
Lucke C.
The FKBP-type domain of the human aryl hydrocarbon receptor-interacting protein reveals
an unusual Hsp90 interaction. Biochemistry 2013; 52: 2097-2107
MissingFormLabel
- 30 EMBL-EBI. Expression Atlas. http://www.ebi.ac.uk/gxa/query?geneQuery = AIP&exactMatch
= true&_exactMatch = on&organism = Homo + sapiens&condition = Access date: 5-4-2015
MissingFormLabel
- 31
Cunningham F,
Amode MR,
Barrell D,
Beal K,
Billis K,
Brent S,
Carvalho-Silva D,
Clapham P,
Coates G,
Fitzgerald S,
Gil L,
Giron CG,
Gordon L,
Hourlier T,
Hunt SE,
Janacek SH,
Johnson N,
Juettemann T,
Kahari AK,
Keenan S,
Martin FJ,
Maurel T,
McLaren W,
Murphy DN,
Nag R,
Overduin B,
Parker A,
Patricio M,
Perry E,
Pignatelli M,
Riat HS,
Sheppard D,
Taylor K,
Thormann A,
Vullo A,
Wilder SP,
Zadissa A,
Aken BL,
Birney E,
Harrow J,
Kinsella R,
Muffato M,
Ruffier M,
Searle SM,
Spudich G,
Trevanion SJ,
Yates A,
Zerbino DR,
Flicek P.
Ensembl 2015. Nucleic Acids Res 2015; 43: D662-D669
MissingFormLabel
- 32
Leontiou CA,
Gueorguiev M,
van der Spuy J,
Quinton R,
Lolli F,
Hassan S,
Chahal HS,
Igreja SC,
Jordan S,
Rowe J,
Stolbrink M,
Christian HC,
Wray J,
Bishop-Bailey D,
Berney DM,
Wass JA,
Popovic V,
Ribeiro-Oliveira Jr. A,
Gadelha MR,
Monson JP,
Akker SA,
Davis JR,
Clayton RN,
Yoshimoto K,
Iwata T,
Matsuno A,
Eguchi K,
Musat M,
Flanagan D,
Peters G,
Bolger GB,
Chapple JP,
Frohman LA,
Grossman AB,
Korbonits M.
The role of the aryl hydrocarbon receptor-interacting protein gene in familial and
sporadic pituitary adenomas. J Clin Endocrinol Metab 2008; 93: 2390-2401
MissingFormLabel
- 33
Jaffrain-Rea ML,
Angelini M,
Gargano D,
Tichomirowa MA,
Daly AF,
Vanbellinghen JF,
D’Innocenzo E,
Barlier A,
Giangaspero F,
Esposito V,
Ventura L,
Arcella A,
Theodoropoulou M,
Naves LA,
Fajardo C,
Zacharieva S,
Rohmer V,
Brue T,
Gulino A,
Cantore G,
Alesse E,
Beckers A.
Expression of aryl hydrocarbon receptor (AHR) and AHR-interacting protein in pituitary
adenomas: pathological and clinical implications. Endocr Relat Cancer 2009; 16: 1029-1043
MissingFormLabel
- 34
Barik S.
Immunophilins: for the love of proteins. Cell Mol Life Sci 2006; 63: 2889-2900
MissingFormLabel
- 35
Guy NC,
Garcia YA,
Sivils JC,
Galigniana MD,
Cox MB.
Functions of the Hsp90-binding FKBP immunophilins. Subcell Biochem 2015; 78: 35-68
MissingFormLabel
- 36
D’Andrea LD,
Regan L.
TPR proteins: the versatile helix. Trends Biochem Sci 2003; 28: 655-662
MissingFormLabel
- 37
Zeytuni N,
Zarivach R.
Structural and functional discussion of the tetra-trico-peptide repeat, a protein
interaction module. Structure 2012; 20: 397-405
MissingFormLabel
- 38
Perdew GH.
Association of the Ah receptor with the 90-kDa heat shock protein. J Biol Chem 1988;
263: 13802-13805
MissingFormLabel
- 39
Chen HS,
Perdew GH.
Subunit composition of the heteromeric cytosolic aryl hydrocarbon receptor complex.
J Biol Chem 1994; 269: 27554-27558
MissingFormLabel
- 40
Nair SC,
Toran EJ,
Rimerman RA,
Hjermstad S,
Smithgall TE,
Smith DF.
A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen
receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl
hydrocarbon receptor. Cell Stress Chaperones 1996; 1: 237-250
MissingFormLabel
- 41
Meyer BK,
Pray-Grant MG,
Vanden Heuvel JP,
Perdew GH.
Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon
receptor core complex and exhibits transcriptional enhancer activity. Mol Cell Biol
1998; 18: 978-988
MissingFormLabel
- 42
Kazlauskas A,
Sundstrom S,
Poellinger L,
Pongratz I.
The hsp90 chaperone complex regulates intracellular localization of the dioxin receptor.
Mol Cell Biol 2001; 21: 2594-2607
MissingFormLabel
- 43
Ramadoss P,
Petrulis JR,
Hollingshead BD,
Kusnadi A,
Perdew GH.
Divergent roles of hepatitis B virus X-associated protein 2 (XAP2) in human versus
mouse Ah receptor complexes. Biochemistry 2004; 43: 700-709
MissingFormLabel
- 44
Whitlock Jr. JP.
Mechanistic aspects of dioxin action. Chem Res Toxicol 1993; 6: 754-763
MissingFormLabel
- 45
Bell DR,
Poland A.
Binding of aryl hydrocarbon receptor (AhR) to AhR-interacting protein. The role of
hsp90. J Biol Chem 2000; 275: 36407-36414
MissingFormLabel
- 46
Beischlag TV,
Luis MJ,
Hollingshead BD,
Perdew GH.
The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev
Eukaryot Gene Expr 2008; 18: 207-250
MissingFormLabel
- 47
Denison MS,
Soshilov AA,
He G,
DeGroot DE,
Zhao B.
Exactly the same but different: promiscuity and diversity in the molecular mechanisms
of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci 2011; 124: 1-22
MissingFormLabel
- 48
Nguyen LP,
Bradfield CA.
The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol
2008; 21: 102-116
MissingFormLabel
- 49
Nukaya M,
Lin BC,
Glover E,
Moran SM,
Kennedy GD,
Bradfield CA.
The aryl hydrocarbon receptor-interacting protein (AIP) is required for dioxin-induced
hepatotoxicity but not for the induction of the Cyp1a1 and Cyp1a2 genes. J Biol Chem
2010; 285: 35599-35605
MissingFormLabel
- 50
Opitz CA,
Litzenburger UM,
Sahm F,
Ott M,
Tritschler I,
Trump S,
Schumacher T,
Jestaedt L,
Schrenk D,
Weller M,
Jugold M,
Guillemin GJ,
Miller CL,
Lutz C,
Radlwimmer B,
Lehmann I,
von DA,
Wick W,
Platten M.
An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature
2011; 478: 197-203
MissingFormLabel
- 51
Yano M,
Terada K,
Mori M.
AIP is a mitochondrial import mediator that binds to both import receptor Tom20 and
preproteins. J Cell Biol 2003; 163: 45-56
MissingFormLabel
- 52
Kang BH,
Altieri DC.
Regulation of survivin stability by the aryl hydrocarbon receptor-interacting protein.
J Biol Chem 2006; 281: 24721-24727
MissingFormLabel
- 53
Kang BH,
Xia F,
Pop R,
Dohi T,
Socolovsky M,
Altieri DC.
Developmental control of apoptosis by the immunophilin aryl hydrocarbon receptor-interacting
protein (AIP) involves mitochondrial import of the survivin protein. J Biol Chem 2011;
286: 16758-16767
MissingFormLabel
- 54
Liu T,
Daniels CK,
Cao S.
Comprehensive review on the HSC70 functions, interactions with related molecules and
involvement in clinical diseases and therapeutic potential. Pharmacol Ther 2012; 136:
354-374
MissingFormLabel
- 55
Truman AW,
Kristjansdottir K,
Wolfgeher D,
Hasin N,
Polier S,
Zhang H,
Perrett S,
Prodromou C,
Jones GW,
Kron SJ.
CDK-dependent Hsp70 phosphorylation controls G1 cyclin abundance and cell-cycle progression.
Cell 2012; 151: 1308-1318
MissingFormLabel
- 56
Kashuba E,
Kashuba V,
Pokrovskaja K,
Klein G,
Szekely L.
Epstein-Barr virus encoded nuclear protein EBNA-3 binds XAP-2, a protein associated
with Hepatitis B virus X antigen. Oncogene 2000; 19: 1801-1806
MissingFormLabel
- 57
Stark C,
Breitkreutz BJ,
Reguly T,
Boucher L,
Breitkreutz A,
Tyers M.
BioGRID: a general repository for interaction datasets. Nucleic Acids Res 2006; 34:
D535-D539
MissingFormLabel
- 58
Trivellin G,
Korbonits M.
AIP and its interacting partners. J Endocrinol 2011; 210: 137-155
MissingFormLabel
- 59
Beavo JA.
Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms.
Physiol Rev 1995; 75: 725-748
MissingFormLabel
- 60
Lugnier C.
Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development
of specific therapeutic agents. Pharmacol Ther 2006; 109: 366-398
MissingFormLabel
- 61
Conti M,
Beavo J.
Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components
in cyclic nucleotide signaling. Annu Rev Biochem 2007; 76: 481-511
MissingFormLabel
- 62 HUGO Gene Nomenclature Committee. Gene Family: Phosphodiesterases (PDE). http://www.genenames.org/cgi-bin/genefamilies/set/681
Access date: 06-10-2016
MissingFormLabel
- 63
Francis SH,
Blount MA,
Corbin JD.
Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological
functions. Physiol Rev 2011; 91: 651-690
MissingFormLabel
- 64
Ke H,
Wang H.
Crystal structures of phosphodiesterases and implications on substrate specificity
and inhibitor selectivity. Curr Top Med Chem 2007; 7: 391-403
MissingFormLabel
- 65
Xu RX,
Hassell AM,
Vanderwall D,
Lambert MH,
Holmes WD,
Luther MA,
Rocque WJ,
Milburn MV,
Zhao Y,
Ke H,
Nolte RT.
Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity.
Science 2000; 288: 1822-1825
MissingFormLabel
- 66
Azevedo MF,
Faucz FR,
Bimpaki E,
Horvath A,
Levy I,
de Alexandre RB,
Ahmad F,
Manganiello V,
Stratakis CA.
Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev 2014;
35: 195-233
MissingFormLabel
- 67
Bolger G,
Michaeli T,
Martins St T,
John T,
Steiner B,
Rodgers L,
Riggs M,
Wigler M,
Ferguson K.
A family of human phosphodiesterases homologous to the dunce learning and memory gene
product of Drosophila melanogaster are potential targets for antidepressant drugs.
Mol Cell Biol 1993; 13: 6558-6571
MissingFormLabel
- 68
Keravis T,
Lugnier C.
Cyclic nucleotide phosphodiesterases (PDE) and peptide motifs. Curr Pharm Des 2010;
16: 1114-1125
MissingFormLabel
- 69
Bolger GB,
Erdogan S,
Jones RE,
Loughney K,
Scotland G,
Hoffmann R,
Wilkinson I,
Farrell C,
Houslay MD.
Characterization of five different proteins produced by alternatively spliced mRNAs
from the human cAMP-specific phosphodiesterase PDE4D gene. Biochem J 1997; 328 Pt
2 539-548
MissingFormLabel
- 70
Bolger GB,
Phosphodiesterase isoforms- an annotated list
In:
Beavo JA,
Francis SH,
Houslay MD.
(eds.). Cyclic nucleotide phosphodiesterases in health and disease. Boca Raton, FL,
USA: CRC Press; 2007
MissingFormLabel
- 71
Eskandari N,
Mirmosayyeb O,
Bordbari G,
Bastan R,
Yousefi Z,
Andalib A.
A short review on structure and role of cyclic-3',5'-adenosine monophosphate-specific
phosphodiesterase 4 as a treatment tool. J Res Pharm Pract 2015; 4: 175-181
MissingFormLabel
- 72
Engels P,
Fichtel K,
Lubbert H.
Expression and regulation of human and rat phosphodiesterase type IV isogenes. FEBS
Lett 1994; 350: 291-295
MissingFormLabel
- 73
Bolger GB,
Bizzi MF,
Pinheiro SV,
Trivellin G,
Smoot L,
Accavitti MA,
Korbonits M,
Ribeiro-Oliveira Jr. A.
cAMP-specific PDE4 phosphodiesterases and AIP in the pathogenesis of pituitary tumors.
Endocr Relat Cancer 2016; 23: 419-431
MissingFormLabel
- 74
Huston E,
Beard M,
McCallum F,
Pyne NJ,
Vandenabeele P,
Scotland G,
Houslay MD.
The cAMP-specific phosphodiesterase PDE4A5 is cleaved downstream of its SH3 interaction
domain by caspase-3. Consequences for altered intracellular distribution. J Biol Chem
2000; 275: 28063-28074
MissingFormLabel
- 75
Beard MB,
Huston E,
Campbell L,
Gall I,
McPhee I,
Yarwood S,
Scotland G,
Houslay MD.
In addition to the SH3 binding region, multiple regions within the N-terminal noncatalytic
portion of the cAMP-specific phosphodiesterase, PDE4A5, contribute to its intracellular
targeting. Cell Signal 2002; 14: 453-465
MissingFormLabel
- 76
Bolger GB,
Peden AH,
Steele MR,
MacKenzie C,
McEwan DG,
Wallace DA,
Huston E,
Baillie GS,
Houslay MD.
Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction
with the immunophilin XAP2. J Biol Chem 2003; 278: 33351-33363
MissingFormLabel
- 77
Bajpai M,
Fiedler SE,
Huang Z,
Vijayaraghavan S,
Olson GE,
Livera G,
Conti M,
Carr DW.
AKAP3 selectively binds PDE4A isoforms in bovine spermatozoa. Biol Reprod 2006; 74:
109-118
MissingFormLabel
- 78
Martinez SE,
Wu AY,
Glavas NA,
Tang XB,
Turley S,
Hol WG,
Beavo JA.
The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and
in cGMP binding. Proc Natl Acad Sci USA 2002; 99: 13260-13265
MissingFormLabel
- 79
Bender AT,
Beavo JA.
Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol
Rev 2006; 58: 488-520
MissingFormLabel
- 80
Rosman GJ,
Martins TJ,
Sonnenburg WK,
Beavo JA,
Ferguson K,
Loughney K.
Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3′,5′-cyclic
nucleotide phosphodiesterase. Gene 1997; 191: 89-95
MissingFormLabel
- 81
Sadhu K,
Hensley K,
Florio VA,
Wolda SL.
Differential expression of the cyclic GMP-stimulated phosphodiesterase PDE2A in human
venous and capillary endothelial cells. J Histochem Cytochem 1999; 47: 895-906
MissingFormLabel
- 82
Stephenson DT,
Coskran TM,
Wilhelms MB,
Adamowicz WO,
O'Donnell MM,
Muravnick KB,
Menniti FS,
Kleiman RJ,
Morton D.
Immunohistochemical localization of phosphodiesterase 2A in multiple mammalian species.
J Histochem Cytochem 2009; 57: 933-949
MissingFormLabel
- 83
Lennox C,
Trivellin G,
Korbonits M.
Evaluation of the interaction of phosphodiesterases 2A and 4A5 with the aryl hydrocarbon
receptor interacting protein in pituitary cells. Soc Endocrinol BES 2011; Endocr Abstr
2011: P245 www.endocrine-abstracts.org
MissingFormLabel
- 84
de Oliveira SK,
Hoffmeister M,
Gambaryan S,
Muller-Esterl W,
Guimaraes JA,
Smolenski AP.
Phosphodiesterase 2A forms a complex with the co-chaperone XAP2 and regulates nuclear
translocation of the aryl hydrocarbon receptor. J Biol Chem 2007; 282: 13656-13663
MissingFormLabel
- 85
de Oliveira SK,
Smolenski A.
Phosphodiesterases link the aryl hydrocarbon receptor complex to cyclic nucleotide
signaling. Biochem Pharmacol 2009; 77: 723-733
MissingFormLabel
- 86
Cabrera-Vera TM,
Vanhauwe J,
Thomas TO,
Medkova M,
Preininger A,
Mazzoni MR,
Hamm HE.
Insights into G protein structure, function, and regulation. Endocr Rev 2003; 24:
765-781
MissingFormLabel
- 87
Kirschner LS.
PRKAR1A and the evolution of pituitary tumors. Mol Cell Endocrinol 2010; 326: 3-7
MissingFormLabel
- 88
Gadelha MR,
Kasuki L,
Korbonits M.
Novel pathway for somatostatin analogs in patients with acromegaly. Trends Endocrinol
Metab 2013; 24: 238-246
MissingFormLabel
- 89
Chahal HS,
Trivellin G,
Leontiou CA,
Alband N,
Fowkes RC,
Tahir A,
Igreja SC,
Chapple JP,
Jordan S,
Lupp A,
Schulz S,
Ansorge O,
Karavitaki N,
Carlsen E,
Wass JA,
Grossman AB,
Korbonits M.
Somatostatin analogs modulate AIP in somatotroph adenomas: the role of the ZAC1 pathway.
J Clin Endocrinol Metab 2012; 97: E1411-E1420
MissingFormLabel
- 90
Kasuki L,
Vieira NL,
Wildemberg LE,
Colli LM,
De CM,
Takiya CM,
Gadelha MR.
AIP expression in sporadic somatotropinomas is a predictor of the response to octreotide
LAR therapy independent of SSTR2 expression. Endocr Relat Cancer 2012; 19: L25-L29
MissingFormLabel
- 91
Kasuki Jomori de PL,
Vieira NL,
Armondi Wildemberg LE,
Gasparetto EL,
Marcondes J,
de Almeida NB,
Takiya CM,
Gadelha MR.
Low aryl hydrocarbon receptor-interacting protein expression is a better marker of
invasiveness in somatotropinomas than Ki-67 and p53. Neuroendocrinology 2011; 94:
39-48
MissingFormLabel
- 92
Jaffrain-Rea ML,
Rotondi S,
Turchi A,
Occhi G,
Barlier A,
Peverelli E,
Rostomyan L,
Defilles C,
Angelini M,
Oliva MA,
Ceccato F,
Maiorani O,
Daly AF,
Esposito V,
Buttarelli F,
Figarella-Branger D,
Giangaspero F,
Spada A,
Scaroni C,
Alesse E,
Beckers A.
Somatostatin analogues increase AIP expression in somatotropinomas, irrespective of
Gsp mutations. Endocr Relat Cancer 2013; 20: 753-766
MissingFormLabel
- 93
Theodoropoulou M,
Zhang J,
Laupheimer S,
Paez-Pereda M,
Erneux C,
Florio T,
Pagotto U,
Stalla GK.
Octreotide, a somatostatin analogue, mediates its antiproliferative action in pituitary
tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1
expression. Cancer Res 2006; 66: 1576-1582
MissingFormLabel
- 94
Cervia D,
Bagnoli P.
An update on somatostatin receptor signaling in native systems and new insights on
their pathophysiology. Pharmacol Ther 2007; 116: 322-341
MissingFormLabel
- 95
Velardez MO,
De Laurentiis A,
del Carmen Diaz M,
Lasaga M,
Pisera D,
Seilicovich A,
Duvilanski BH.
Role of phosphodiesterase and protein kinase G on nitric oxide-induced inhibition
of prolactin release from the rat anterior pituitary. Eur J Endocrinol 2000; 143:
279-284
MissingFormLabel
- 96
Lania A,
Persani L,
Ballare E,
Mantovani S,
Losa M,
Spada A.
Constitutively active Gs alpha is associated with an increased phosphodiesterase activity
in human growth hormone-secreting adenomas. J Clin Endocrinol Metab 1998; 83: 1624-1628
MissingFormLabel
- 97
Persani L,
Borgato S,
Lania A,
Filopanti M,
Mantovani G,
Conti M,
Spada A.
Relevant cAMP-specific phosphodiesterase isoforms in human pituitary: effect of Gs(alpha)
mutations. J Clin Endocrinol Metab 2001; 86: 3795-3800
MissingFormLabel
- 98
Peverelli E,
Ermetici F,
Filopanti M,
Elli FM,
Ronchi CL,
Mantovani G,
Ferrero S,
Bosari S,
Beck-Peccoz P,
Lania A,
Spada A.
Analysis of genetic variants of phosphodiesterase 11A in acromegalic patients. Eur
J Endocrinol 2009; 161: 687-694
MissingFormLabel
- 99
Peverelli E,
Mantovani G,
Lania AG,
Spada A.
cAMP in the pituitary: an old messenger for multiple signals. J Mol Endocrinol 2014;
52: R67-R77
MissingFormLabel
- 100
MacKenzie KF,
Wallace DA,
Hill EV,
Anthony DF,
Henderson DJ,
Houslay DM,
Arthur JS,
Baillie GS,
Houslay MD.
Phosphorylation of cAMP-specific PDE4A5 (phosphodiesterase-4A5) by MK2 (MAPKAPK2)
attenuates its activation through protein kinase A phosphorylation. Biochem J 2011;
435: 755-769
MissingFormLabel
- 101
Ramamurthy V,
Niemi GA,
Reh TA,
Hurley JB.
Leber congenital amaurosis linked to AIPL1: a mouse model reveals destabilization
of cGMP phosphodiesterase. Proc Natl Acad Sci USA 2004; 101: 13897-13902
MissingFormLabel
- 102
Williams F,
Hunter S,
Bradley L,
Chahal HS,
Storr HL,
Akker SA,
Kumar AV,
Orme SM,
Evanson J,
Abid N,
Morrison PJ,
Korbonits M,
Atkinson AB.
Clinical experience in the screening and management of a large kindred with familial
isolated pituitary adenoma due to an aryl hydrocarbon receptor interacting protein
(AIP) mutation. J Clin Endocrinol Metab 2014; 99: 1122-1131
MissingFormLabel
- 103 Igreja S, Chahal HS, King P, Bolger GB, Srirangalingam U, Guasti L, Chapple JP, Trivellin
G, Gueorguiev M, Guegan K, Stals K, Khoo B, Kumar AV, Ellard S, Grossman AB, Korbonits
M. Characterization of aryl hydrocarbon receptor interacting protein (AIP) mutations
in familial isolated pituitary adenoma families. Hum Mutat. 2010: 31: 950–960
MissingFormLabel
- 104
Hernández-Ramírez LC,
Martucci F,
Morgan RM,
Trivellin G,
Tilley D,
Ramos-Guajardo N,
Iacovazzo D,
D'Acquisto F,
Prodromou C,
Korbonits M.
Rapid proteasomal degradation of mutant proteins is the primary mechanism leading
to tumorigenesis in patients with missense AIP mutations. J Clin Endocrinol Metab
2016; 101: 3144-3154
MissingFormLabel
- 105 Aflorei ED, Radian S, Chen C, Klapholz B, Brown N, Stanewsky R, Korbonits M. Functional
homology between human and fruitfly AIP protein - an in vivo assay system to test
the pathogenicity of AIP mutations. Endocr Rev 2015; 36: (2_Meeting Abstracts): SAT-440
MissingFormLabel
- 106
Rosenberg D,
Groussin L,
Jullian E,
Perlemoine K,
Bertagna X,
Bertherat J.
Role of the PKA-regulated transcription factor CREB in development and tumorigenesis
of endocrine tissues. Ann NY Acad Sci 2002; 968: 65-74
MissingFormLabel
- 107
Tomic M,
Kucka M,
Kretschmannova K,
Li S,
Nesterova M,
Stratakis CA,
Stojilkovic SS.
Role of nonselective cation channels in spontaneous and protein kinase A-stimulated
calcium signaling in pituitary cells. Am J Physiol Endocrinol Metab 2011; 301: E370-E379
MissingFormLabel
- 108
Kleuss C,
Raw AS,
Lee E,
Sprang SR,
Gilman AG.
Mechanism of GTP hydrolysis by G-protein alpha subunits. Proc Natl Acad Sci USA 1994;
91: 9828-9831
MissingFormLabel
- 109
Griffioen G,
Thevelein JM.
Molecular mechanisms controlling the localisation of protein kinase A. Curr Genet
2002; 41: 199-207
MissingFormLabel
- 110
Ben-Shlomo A,
Melmed S.
Pituitary somatostatin receptor signaling. Trends Endocrinol Metab 2010; 21: 123-133
MissingFormLabel