Klinische Neurophysiologie 2017; 48(03): 164-167
DOI: 10.1055/s-0043-105960
Alois-Kornmüller-Preis 2017
© Georg Thieme Verlag KG Stuttgart · New York

MRT-basierte Bestimmung des Risikos für die Lese-Rechtschreib-Störung im Vorschulalter

Predicting the Risk for Developmental Dyslexia before School Age with MRI
Michael Artur Skeide
1   Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig
› Author Affiliations
Further Information

Publication History

Publication Date:
11 May 2017 (online)

Zusammenfassung

Die Lese-Rechtschreib-Störung (LRS) gilt als die häufigste aller Lernentwicklungsstörungen überhaupt. Etwa 5% der deutschen Bevölkerung leidet unter den psychischen und sozialen Folgen schwerwiegender umschriebener Probleme beim Erlernen des Lesens und Schreibens. LRS entsteht aus dem komplexen Zusammenspiel von genetischen Faktoren und Umweltfaktoren (z. B. sprachliche Lernvoraussetzungen im Elternhaus). In zahlreichen vorangegangenen Magnetresonanztomografie (MRT) Studien wurde zudem gezeigt, dass der linke gyrus fusiformis (FFG, sogenanntes „visuelles Wortformareal“) des Gehirns eine entscheidende Rolle für den Schriftspracherwerb spielt. Die hier vorgestellte Arbeit legt nahe, dass die kortikale Plastizität des FFG bei LRS durch das Tragen einer Risikovariante des Gens NRSN1 eingeschränkt sein könnte, dessen Proteine u. a. das Wachstum von Dendriten steuern. NRSN1 erwies sich als signifikant mit dem Volumen des linken FFG assoziiert, welches mithilfe von voxelbasierter Morphometrie (VBM) auf Grundlage von MRT Aufnahmen gemessen wurde. Anhand der durch genetische Assoziation bestimmten volumetrischen Profile von Kindern, die sich etwa 10 Monate vor Schuleintritt befanden, konnte die spätere Ausprägung einer LRS mit einer Klassifikationsgenauigkeit von 75% vorhergesagt werden. Diese Daten lassen hoffen LRS in Zukunft so früh feststellen zu können, dass betroffene Kinder in der Lage sind ihre Defizite vor der Einschulung mithilfe von Frühförderungsmaßnahmen zu kompensieren.

Abstract

Developmental dyslexia (DD) is considered to be the most common among all learning disorders. About 5% of the population in Germany and 7% in the USA suffer from the psychological and social consequences of severe deficits in learning how to read and spell. DD arises from the complex interplay of genetic and environmental factors (e. g. home literacy environment). Moreover, numerous previous magnetic resonance imaging (MRI) studies have shown that the left fusiform gyrus (FFG, “visual word form area”) of the brain plays a crucial role in literacy acquisition. The present work suggests that the cortical plasticity of the FFG might be limited in individuals with DD because they carry a risk variant of the gene NRSN1 that codes proteins regulating neurite growth. NRSN1 turned out to be significantly associated with the volume of the left FFG that was estimated by conducting a voxel-based morphometry (VBM) analysis of MR images. Using volumetric profiles determined by genetic association in children, DD could be predicted 10 months before school entry with a classification accuracy of 75%. These data might make it possible in the future to diagnose DD so early that affected children might be able to compensate their deficits before school enrollment by making use of early intervention programs.

 
  • Literatur

  • 1 Moll K, Kunze S, Neuhoff N. et al. Specific learning disorder: prevalence and gender differences. PLoS One 2014; 9: e103537
  • 2 Peterson RL, Pennington BF. Developmental dyslexia. Lancet 2012; 379: 1997-2007
  • 3 Mugnaini D, Lassi S, La Malfa G. et al. Internalizing correlates of dyslexia. World J Pediatr 2009; 5: 255-264
  • 4 Scerri TS, Schulte-Korne G. Genetics of developmental dyslexia. Eur Child Adolesc Psychiatry 2010; 19: 179-197
  • 5 Friend A, DeFries JC, Olson RK. Parental education moderates genetic influences on reading disability. Psychol Sci 2008; 19: 1124-1130
  • 6 Cope N, Eicher JD, Meng H. et al. Variants in the DYX2 locus are associated with altered brain activation in reading-related brain regions in subjects with reading disability. Neuroimage 2012; 63: 148-156
  • 7 Darki F, Peyrard-Janvid M, Matsson H. et al. DCDC2 Polymorphism is associated with left temporoparietal gray and white matter structures during development. Journal of Neuroscience 2014; 34: 14455-14462
  • 8 Pinel P, Fauchereau F, Moreno A. et al. Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct language-related regions. J Neurosci 2012; 32: 817-825
  • 9 Skeide MA, Kirsten H, Kraft I. et al. Genetic dyslexia risk variant is related to neural connectivity patterns underlying phonological awareness in children. Neuroimage 2015; 118: 414-421
  • 10 Goswami U. Sensory theories of developmental dyslexia: three challenges for research. Nat Rev Neurosci 2015; 16: 43-54
  • 11 Kiyonaga-Endou K, Oshima M, Sugimoto K. et al. Localization of Neurensin1 in cerebellar Purkinje cells of the developing chick and its possible function in dendrite formation. Brain Res 2016; 1635: 113-120
  • 12 Threlkeld SW, McClure MM, Bai J. et al. Developmental disruptions and behavioral impairments in rats following in utero RNAi of Dyx1c1. Brain Res Bull 2007; 71: 508-514
  • 13 Kraft I, Cafiero R, Schaadt G et al. Cortical differences in preliterate children at familiar risk of dyslexia are similar to those observed in dyslexic readers. Brain 2015; 138
  • 14 Kraft I, Schreiber J, Cafiero R. et al. Predicting early signs of dyslexia at a preliterate age by combining behavioral assessment with structural MRI. Neuroimage 2016; 143: 378-386
  • 15 Raschle NM, Chang M, Gaab N. Structural brain alterations associated with dyslexia predate reading onset. Neuroimage 2011; 57: 742-749
  • 16 Raschle NM, Zuk J, Gaab N. Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset. Proc Natl Acad Sci U S A 2012; 109: 2156-2161
  • 17 Ge T, Feng J, Hibar DP. et al. Increasing power for voxel-wise genome-wide association studies: the random field theory, least square kernel machines and fast permutation procedures. Neuroimage 2012; 63: 858-873
  • 18 Skeide MA, Kraft I, Müller B. et al. NRSN1 associated grey matter volume of the visual word form area reveals dyslexia before school. Brain 2016; 139: 2792-2803
  • 19 Dehaene S, Cohen L, Morais J. et al. Illiterate to literate: behavioural and cerebral changes induced by reading acquisition. Nat Rev Neurosci 2015; 16: 234-244
  • 20 Brem S, Bach S, Kucian K. et al. Brain sensitivity to print emerges when children learn letter-speech sound correspondences. P Natl Acad Sci USA 2010; 107: 7939-7944
  • 21 Carreiras M, Armstrong BC, Perea M. et al. The what, when, where, and how of visual word recognition. Trends Cogn Sci 2014; 18: 90-98
  • 22 Monzalvo K, Fluss J, Billard C. et al. Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status. Neuroimage 2012; 61: 258-274
  • 23 Altarelli I, Monzalvo K, Iannuzzi S. et al. A functionally guided approach to the morphometry of occipitotemporal regions in developmental dyslexia: evidence for differential effects in boys and girls. J Neurosci 2013; 33: 11296-11301
  • 24 Frye RE, Liederman J, Malmberg B. et al. Surface area accounts for the relation of gray matter volume to reading-related skills and history of dyslexia. Cereb Cortex 2010; 20: 2625-2635
  • 25 Pennington BF. From single to multiple deficit models of developmental disorders. Cognition 2006; 101: 385-413
  • 26 van Zuijen TL, Plakas A, Maassen BAM. et al. Infant ERPs separate children at risk of dyslexia who become good readers from those who become poor readers. Developmental Sci 2013; 16: 554-563
  • 27 Schaadt G, Männel C, van der Meer E. et al. Present and past: Can writing abilities in school children be associated with their auditory discrimination capacities in infancy?. Res Dev Disabil 2015; 47: 318-333
  • 28 Jansen H, Mannhaupt G, Marx H. et al. Bielefelder Screening zur Früherkennung von Lese-Rechtschreibschwierigkeiten (BISC). Göttingen: Hogrefe; 2002
  • 29 Küspert P, Schneider W. Hören, lauschen, lernen 2 - Spiele mit Buchstaben und Lauten für Kinder im Vorschulalter - Würzburger Buchstaben-Laut-Training. Göttingen: Vandenhoeck & Ruprecht; 2008
  • 30 Hoeft F, McCandliss BD, Black JM. et al. Neural systems predicting long-term outcome in dyslexia. Proc Natl Acad Sci U S A 2011; 108: 361-366