Exp Clin Endocrinol Diabetes 2017; 125(07): 454-469
DOI: 10.1055/s-0043-106438
Review
© Georg Thieme Verlag KG Stuttgart · New York

Markers of Bone and Cartilage Turnover

Henning W. Woitge
1   Bone Research Program, ANZAC Research Institute, Sydney, Australia
,
Markus J. Seibel
2   ANZAC Research Institute, Sydney, Australia
› Author Affiliations
Further Information

Publication History

received 06 November 2016
revised 27 February 2017

accepted 15 March 2017

Publication Date:
25 April 2017 (online)

Abstract

Over the past few decades, scientists have been trying to identify tissue-specific markers that would help to better understand the pathogenesis of bone and cartilage diseases and could be used clinically for the screening, diagnosis and follow-up of bone or joint diseases. Historically, only a few components known to be involved in bone, mineral or cartilage turnover were available for this purpose (e. g., urine hydroxyproline, serum and urine calcium and phosphate levels). However, since most if not all of these substances have wider biological functions beyond bone, mineral and cartilage metabolism, their clinical value as tissue-specific markers was limited. Hence, there was a need to identify more specific indices of bone and cartilage metabolism. Since the 1980s, a number of collagenous and non-collagenous breakdown products as well as cell-specific enzymes have been discovered and developed into markers of musculoskeletal tissue metabolism. This review describes their chemical and biological function, available analytical methods and possible clinical applications.

 
  • References

  • 1 Liu SH, Yang RS, al-Shaikh R. et al. Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop Relat Res 1995; 318: 265-278
  • 2 Taubman MB, Goldberg B, Sherr C. Radioimmunoassay for human procollagen. Science 1974; 186: 1115-1117
  • 3 Melkko J, Niemi S, Risteli L. et al. Radioimmunoassay of the carboxyterminal propeptide of human type I procollagen. Clin Chem 1990; 36: 1328-1332
  • 4 Eriksen EF, Charles P, Meisen F. et al. Serum markers of type 1 collagen formation and degradation in metabolic bone disease: Correlation with bone histomorphometry. J Bone Miner Res 1993; 8: 127-132
  • 5 Krane SM, Kantrowitz FG, Byrne M. et al. Urinary excretion of hydroxylysine and its glycosides as an index of collagen degradation. J Clin Invest 1977; 59: 819-827
  • 6 Smith R. Collagen and disorders of bone. Clin Sci 1980; 59: 215-223
  • 7 Prockop DJ, Kivirikko KI, Tuderman L. et al. The biosynthesis of collagen and its disorders. New Engl J Med 1979; 301: 13-23
  • 8 Cunningham LW, Ford JD, Segrest JP. The isolation of identical hydroxylysyl glycosides from hydroxylates of soluble collagen and from human urine. J Biol Chem 1967; 242: 2570-2571
  • 9 Moro L, Modricki C, Stagni N. et al. High performance liquid chromatography analysis of urinary hydroxylysine glycosides as indicators of collagen turnover. Analyst 1984; 109: 1621-1628
  • 10 Seibel MJ, Robins SP, Bilezikian JP. Urinary pyridinium crosslinks of collagen: specific markers of bone resorption in metabolic bone disease. Trends Endocrinol Metab 1992; 3: 263-270
  • 11 Kraenzlin EM, Seibel MJ. Measurement of biochemical markers of bone resorption. In: Dynamics of Bone and Cartilage Metabolism. Seibel MJ, Robins SP, Bilezikian JP. eds. Academic Press; San Diego: 1999. pp 411-426
  • 12 Risteli J, Niemi S, Elomaa I. et al. Bone resorption assay based on a peptide liberated during type I collagen degradation. J Bone Miner Res 1991; 6 S251 A670
  • 13 Risteli J, Risteli L. Products of bone collagen metabolism. In: Dynamics of Bone and Cartilage Metabolism. Seibel MJ, Robins S, Bilezikian J. eds. Academic Press; San Diego: 1999. pp 275-288
  • 14 Bonde M, Qvist P, Fledelius C. et al. Immunoassay for quantifying type I degradation products in urine evaluated. Clin Chem 1994; 40: 2022- 2025
  • 15 Fledelius C, Johnsen AH, Cloos PAC. et al. Characterization of urinary degradation products derived from type I collagen. Identification of a beta-isomerized Asp-Gly sequence within the C-terminal telopeptide (alpha1) region. J Biol Chem 1997; 272: 9755-9763
  • 16 Bonde M, Fledelius C, Qvist P. et al. Coated-tube radioimmunoassay for Ctelopeptides of type I collagen to assess bone resorption. Clin Chem 1996; 42: 1639-1644
  • 17 Garnero P, Fledelius C, Gineyts E. et al. Decreased beta-isomerization of the C-terminal telopeptide of type I collagen alpha 1 chain in Paget's disease of bone. J Bone Miner Res 1997; 12: 1407-1415
  • 18 Cloos PAC, Fledelius C, Ovist P. et al. Biological clocks of bone aging: Racemisation and isomerization, potential tools to assess bone turnover. Bone 1998; 23 Suppl F440
  • 19 Bonde M, Garnero P, Fledelius C. et al. Measurement of bone degradation products in serum using antibodies reactive with an isomerized form of an 8 amino acid sequence of the Ctelopeptide of type I collagen. J Bone Miner Res 1997; 12: 1028-1034
  • 20 Hanson DA, Weis MA, Bollen AM. et al. A specific immunoassay for monitoring human bone resorption: Quantitation of type I collagen cross-linked N-telopeptides in urine. J Bone Miner Res 1992; 7: 1251-1258
  • 21 Robins SP. Collagen crosslinks in metabolic bone disease. Acta Orthop Scand Suppl 1995; 266: 171-175
  • 22 Gallop PM, Lian JB, Hauschka PV. Carboxylated calcium-binding proteins and vitamin K. New Eng J Med 1980; 302: 1460-1466
  • 23 Gundberg CM, Nishimoto SK. Vitamin K dependent proteins of bone and cartilage. In: Dynamics of bone and cartilage metabolism. Seibel MJ, Robins SP, Bilezikian JP. eds. Academic Press; San Diego: 1999. pp 43-58
  • 24 Ducy P, Desbois C, Boycem B. et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996; 382: 448-452
  • 25 Lee NK, Sowa H, Hinoi E. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007; 130: 456-469
  • 26 Brennan-Speranza TC, Henneicke H, Gasparini SJ. et al. Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism. J Clin Invest 2012; 122: 4172-4189
  • 27 Delmas PD, Malaval L, Arlot M. et al. Serum bone-Gla-protein compared to bone histomorphometry in endocrine diseases. Bone 1985; 6: 339-341
  • 28 Baumgrass R, Williamson MK, Price PA. Identification of peptide fragments generated by digestion of bovine and human osteocalcin with the lysosomal proteinases cathepsin B, D, L, H, and S. J Bone Miner Res 1997; 12: 447-455
  • 29 Diaz Diego EM, Guerrero R, de la Piedra C. Six osteocalcin assays compared. Clin Chem 1994; 40: 2071-2077
  • 30 Chen J, Shapiro HS, Wrana JL. et al. Localization of bone sialoprotein (BSP) expression to sites of mineral tissue formation in fetal rat tissue by in situ hybridization. Matrix 1991; 11: 133- 143
  • 31 Ross FP, Chappel J, Alvarez JI. et al. Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin αV β3 potentiate bone resorption. J Biol Chem 1993; 268: 9901-9907
  • 32 Karmatschek M, Woitge HW, Armbruster FP. et al. Improved purification of human bone sialoprotein and development of a homologous radioimmunoassay. Clin Chem 1997; 43: 2076-2082
  • 33 Cogan G, Bansal AK, Ibrahim S. et al. Analysis of human bone sialoprotein in normal and pathological tissues using a monoclonal antibody (BSP 1.2 mab). Connect Tissue Res 2004; 45: 60-71
  • 34 Fedarko NS, Fohr B, Robey PG. et al. Factor H binding to bone sialoprotein and osteopontin enables tumor cell evasion from complement-mediated attack. J Biol Chem 2000; 275: 16666-16672
  • 35 Seibel MJ, Woitge HW, Pecherstorfer M. et al. Serum immunoreactive bone sialoprotein as a new marker of bone turnover in metabolic and malignant bone disease. J Clin Endocrinol Metab 1996; 81: 3289-3294
  • 36 Stinson RA, Hamilton BA. Human liver plasma membranes contain an enzyme activity that removes membrane anchor from alkaline phosphatase and converts it to a plasma-like form. Clin Biochem 1994; 27: 49-55
  • 37 Van Hoof VO, Holyaerts MF, Geryl H. et al. Age and sex distribution of alkaline phosphatase isoenzymes by agarose electrophoresis. Clin Chem 1990; 36: 875-878
  • 38 Harris H. The human alkaline phosphatases: what we know and what we don't know. Clin Chim Acta 1990; 186: 133-150
  • 39 Woitge H, Seibel MJ, Ziegler R. Comparison of total and bone-specific alkaline phosphatase in patients with nonskeletal disorders or metabolic bone disease. Clin Chem 1996; 42: 1796-1804
  • 40 Alpers DH, Goodwin CL, Young GP. Quantitation of human intestinal and liver/bone alkaline phosphatase in serum by rocket electroimmunoassay. Anal Biochem 1984; 140: 129-137
  • 41 Farley JR, Chesnut III CH, Baylink DJ. Improved method for quantitative determination in serum of alkaline phosphatase of skeletal origin. Clin Chem 1981; 27: 2002-2007
  • 42 Minkin C. Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 1982; 34: 285-290
  • 43 Kraenzlin ME, Lau KH, Liang L. et al. Development of an immunoassay for human serum osteoclastic tartrate- resistant acid phosphatase. J Clin Endocrinol Metab 1990; 71: 442-451
  • 44 Halleen JM, Alatalo SL, Suominen H. et al. Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 2000; 15: 1337-1345
  • 45 Bais R, Edwards JB. An optimized continuous-monitoring procedure for semiautomated determination of serum acid phosphatase activity. Clin Chem 1976; 22: 2025-2028
  • 46 Li Z, Yasuda Y, Li W. et al. Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J Biol Chem 2004; 279: 5470-5479
  • 47 Gelb BD, Shi GP, Chapman HA. et al. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 1996; 273: 1236-1238
  • 48 Saftig P, Hunziker E, Wehmeyer O. et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 1998; 95: 13453-13458
  • 49 Goto T, Yamaza T, Tanaka T. Cathepsins in the osteoclast. J Electron Microsc 2003; 52: 551-558
  • 50 Sorensen MG, Henriksen K, Schaller S. et al. Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab 2007; 25: 36-45
  • 51 Qian J, Xie J, Hong S. et al. Dickkopf-1 (DKK1) is a widely expressed and potent tumorassociated antigen in multiple myeloma. Blood 2007; 110: 1587-1594
  • 52 Bonewald LF. The amazing osteocyte. J Bone Miner Res 2011; 26: 229-238
  • 53 Brunkow ME, Gardner JC, Van Ness J. et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 2001; 68: 577-589
  • 54 Van Bezooijen RL, Papapoulos SE, Hamdy NA. et al. Control of bone formation by osteocytes? Lessons from the rare skeletal disorders sclerosteosis and van Buchem disease. BoneKEy-Osteovision 2005; 2: 33
  • 55 Van Lierop AH, Hamdy NA, Hamersma H. et al. Patients with sclerosteosis and disease carriers: Human models of the effect of sclerostin on bone turnover. J Bone Miner Res 2011; 226: 2804-2811
  • 56 Van Lierop AH, Appelman-Dijkstra NM, Papapoulos SE. Sclerostin deficiency in humans. Bone 2016; 10: 010
  • 57 Schaller S, Henriksen K, Hoegh-Andersen P. et al. In vitro, ex vivo, and in vivo methodological approaches for studying therapeutic targets of osteoporosis and degenerative joint diseases: How biomarkers can assist?. Assay Drug Dev Technol 2005; 3: 553-580
  • 58 Nelson F, Dahlberg L, Laverty S. et al. Evidence for altered synthesis of type II collagen in patients with osteoarthritis. J Clin Invest 1998; 102: 2115-2125
  • 59 Shinmei M, Ito K, Matsuyama S. et al. Joint fluid carboxy-terminal type II procollagen peptide as a marker of cartilage collagen biosynthesis. Osteoarthritis Cartilage 1993; 1: 121-128
  • 60 Olsen A, Sondergaard BC, Byrjalsen I. et al. Anabolic and catabolic function of chondrocytes ex vivo is reflected by the metabolic processing of type II collagen. Osteoarthritis Cartilage 2007; 15: 335-342
  • 61 Rousseau JC, Zhu Y, Miossec P. et al. Serum levels of type IIA procollagen amino terminal propeptide (PIIANP) are decreased in patients with knee osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 2004; 12: 440-447
  • 62 Sondergaard BC, Henriksen K, Wulf H. et al. Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine- stimulated articular cartilage degradation. Osteoarthritis Cartilage 2006; 14: 738-748
  • 63 Poole AR, Ionescu M, Fitzcharles MA. et al. The assessment of cartilage degradation in vivo: Development of an immunoassay for the measurement in body fluids of type II collagen cleaved by collagenases. J Immunol Methods 2004; 294: 145-153
  • 64 Billinghurst RC, Mwale F, Hollander A. et al. Immunoassays for collagens in chondrocyte and cartilage explant cultures. Methods Mol Med 2004; 100: 251-274
  • 65 Billinghurst RC, Dahlberg L, Ionescu M. et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 1997; 99: 1534-1545
  • 66 Reijman M, Hazes JM, Bierma-Zeinstra SM. et al. A new marker for osteoarthritis: Cross-sectional and longitudinal approach. Arthritis Rheum 2004; 50: 2471-2478
  • 67 Charni N, Juillet F, Garnero P. Urinary type II collagen helical peptide (HELIX- II) as a new biochemical marker of cartilage degradation in patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 2005; 52: 1081-1090
  • 68 Nemirovskiy OV, Dufield DR, Sunyer T. et al. Discovery and development of a type II collagen neoepitope (TIINE) biomarker for matrix metalloproteinase activity: from in vitro to in vivo. Anal Biochem 2007; 361: 93-101
  • 69 Kiani C, Chen L, Wu YJ. et al. Structure and function of aggrecan. Cell Res 2002; 12: 19-32
  • 70 Heinegard D. Proteoglycans and more – from molecules to biology. Int J Exp Pathol 2009; 90: 575-586
  • 71 Sumer EU, Sondergaard BC, Rousseau JC. et al. MMP and non-MMP-mediated release of aggrecan and its fragments from articular cartilage: A comparative study of three different aggrecan and glycosaminoglycan assays. Osteoarthritis Cartilage 2007; 15: 212-221
  • 72 Pratta MA, Su JL, Leesnitzer MA. et al. Development and characterization of a highly specific and sensitive sandwich ELISA for detection of aggrecanase-generated aggrecan fragments. Osteoarthritis Cartilage 2006; 14: 702-713
  • 73 Seibel MJ, Jelsma R, Saed-Nejad F. et al. Variablity in the immunochemical quantitation of keratan sulphate in cartilage proteoglycans. Biochem Soc Trans 1990; 18: 969-970
  • 74 Seibel MJ, Jelsma R, Saed-Nejad F. et al. Quantitation of keratansulfate epitope in bovine and human cartilage proteoglycans: comparison of immunoassay procedures and anti-keratan sulfate antibodies. In: Maroudas A, Kuettner K. (eds.). Methods in Cartilage Research. London: Academic, Press; 1991. pp 173-177
  • 75 Lohmander LS, Dahlberg L, Ryd L. et al. Increased levels of proteoglycan fragments in knee joint fluid after injury. Arthritis Rheum 1989; 32: 1434 - 1442
  • 76 Dahlberg L, Ryd L, Heinegard D. et al. Proteoglycan fragments in joint fluid; influence of arthrosis and inflammation. Acta Orthop Scand 1992; 63: 417-423
  • 77 Ratcliffe A, Israel HA, Saed-Nejad F. et al. Keratansulphate epitope levels are elevated in synovial fluids from joints with arthroscopically diagnosed early osteoarthritis. Trans Orth Soc 1991; 16: 228
  • 78 Campion GV, McCrae F, Schnitzer TJ. et al. Levels of keratin sulphate in the serum and synovial fluid of patients with osteoarthritis of the knee. Arthritis Rheum 1991; 35: 1254
  • 79 Seibel MJ, Towbin H, Braun DG. et al. Serum keratan sulphate in rheumatoid arthritis and different subsets of osteoarthritis. In: Greiling H, Scott JE. (eds.) Keratansulphate: Chemistry, Biology, Chemical Pathology. London: The Biochemical Society; 1989. pp 191-198
  • 80 Sharif M, George E, Shepstone L. et al. Serum hyaluronic acid level as a predictor of disease progression in osteoarthritis of the knee. Arthritis Rheum 1995; 38: 760-767
  • 81 Glant TT, Mikecz K, Poole AR. Monoclonal antibodies to different protein- related epitopes of human articular cartilage proteoglycans. Biochem J 1986; 234: 31-41
  • 82 Slater RR, Bayliss MT, Lachiewicz PF. et al. Monoclonal antibodies that detect biochemical markers of arthritis in humans. Arthritis Rheum 1995; 38: 655-659
  • 83 Saxne T, Heinegard D. Cartilage oligomeric matrix protein: a novel marker of cartilage turnover detectable in synovial fluid and blood. Br J Rheumatol 1992; 31: 583-591
  • 84 Lohmander L, Saxne T, Heinegard D. Release of cartilage oligomeric matrix protein (COMP) into joint fluid after knee injury and in osteoarthritis. Ann Rheum Dis 1994; 53: 8-13
  • 85 Vilim V, Vytásek R, Olejárová M. et al. Serum cartilage oligomeric matrix protein reflects the presence of clinically diagnosed synovitis in patients with knee osteoarthritis. Osteoarthritis Cartilage 2001; 9: 612-618
  • 86 Lohmander LS, Hoerrner LA, Lark MW. Metalloproteinases, tissue inhibitor, and proteoglycan fragments in knee synovial fluid in human osteoarthritis. Arthritis Rheum 1993; 36: 181-189
  • 87 Glasson SS, Askew R, Sheppard B. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 2005; 434: 644-648
  • 88 Stanton H, Rogerson FM, East CJ. et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 2005; 434: 648-652
  • 89 Seibel MJ. Biochemical markers of bone turnover. Part I: Biochemistry and variability. Clin Biochem Rev 2005; 26: 97-122
  • 90 Hayter AJ. The maximum familywise error rate of Fisher's Least Significant Difference test. JASA 1986; 81: 1000-1004
  • 91 Midtby M, Magnus J, Joakimsen R. The Tromso Study: A population-based study on the variation in bone formation markers with age, gender, anthropometry and season in both men and women. Osteoporos Int 2001; 12: 835-843
  • 92 Henriksen K, Christiansen C, Karsdal MA. Role of biochemical markers in the management of osteoporosis. Climacteric 2015; 18: 10-18
  • 93 Rosen C, Chesnut 3rd CH, Mallinak NJ. The predictive value of biochemical markers of bone turnover for bone mineral density in early postmenopausal women treated with hormone replacement or calcium supplementation. J Clin Endocrinol Metab 1997; 82: 1904-1910
  • 94 Dresner-Pollak R, Seibel MJ, Greenspan S. et al. Biochemical markers of bone turnover reflect femoral bone loss in elderly women. Calcif Tissue Int 1993; 59: 328-333
  • 95 Christiansen C, Riis BJ, Rodbro P. Prediction of rapid bone loss in postmenopausal women. Lancet 1987; 1: 1105-1108
  • 96 Schneider DL, Barrett-Connor EL. Urinary N-telopeptide levels discriminate normal, osteopenic and osteoporotic bone mineral density. Arch Intern Med 1997; 157: 1241-1245
  • 97 Riggs BL, Melton III LJ, O’Fallon WM. Drug therapy for vertebral fractures in osteoporosis: Evidence that decreases in bone turnover and increases in bone mass both determine antifracture efficacy. Bone 1996; 18: S197-S201
  • 98 Van Daele PL, Seibel MJ, Burger H. et al. Case control analysis of bone resorption markers, disability and hip fracture risk: The Rotterdam study. BMJ 1996; 312: 482-483
  • 99 Weel A, Seibel MJ, Pols HA. et al. Which fractures are associated with high bone resorption in elderly women: The Rotterdam study. J Bone Miner Res 1999; 14: S356
  • 100 Garnero P, Hausherr E, Chapuy MC. et al. Markers of bone resorption predict hip fractures in elderly women. The EPIDOS Prospective Study. J Bone Miner Res 1996; 11: 1531-1538
  • 101 Akesson K, Ljunghall S, Jonsson B. et al. Assessment of biochemical markers of bone metabolism in relation to the occurrence of fracture: A retrospective and prospective population-based study in women. J Bone Miner Res 1995; 10: 1823-1829
  • 102 Meier C, Nguyen TV, Center JR. et al. Bone resorption and osteoporotic fractures in elderly men: the Dubbo osteoporosis epidemiology study. J Bone Miner Res 2005; 20: 579-587
  • 103 Nielsen NM, von der Recke P, Hansen MA. et al. Estimation of the effect of salmon calcitonin in established osteoporosis by biochemical bone markers. Calcif Tissue Int 1994; 55: 8-11
  • 104 Civitelli R, Gonnelli S, Zacchei F. et al. Bone turnover in postmenopausal osteoporosis. Effect of calcitonin treatment. J Clin Invest 1988; 82: 1268-1274
  • 105 Gonnelli S, Cepollaro C, Pondrelli C. et al. Bone turnover and the response to alendronate treatment in postmenopausal osteoporosis. Calcif Tissue Int. 1999; 65: 359-364
  • 106 Riggs BL, Melton III LJ, O’Fallon WM. Drug therapy for vertebral fractures in osteoporosis: Evidence that decreases in bone turnover and increases in bone mass both determine antifracture efficacy. Bone 1996; 18: S197-S201
  • 107 Stevenson JC, Hillard TC, Lees B. et al. Postmenopausal bone loss: does HRT always work?. Int J Fertil Menopausal Stud 1993; 38 S2 88-91
  • 108 Garnero P, Sornay-Rendu E, Chapuy M-C. et al. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Min Res 1996; 11: 337-349
  • 109 Seibel MJ, Naganathan V, Barton I. et al. Relationship between pretreatment bone resorption and vertebral fracture incidence in postmenopausal osteoporotic women treated with risedronate. J Bone Miner Res. 2004; 19: 323-329
  • 110 Bauer DC, Garnero P, Hochberg MC. et al. Pretreatment levels of bone turnover and the antifracture efficacy of alendronate: The fracture intervention trial. J Bone Miner Res 2006; 21: 292-299
  • 111 Reginster JY. Antifracture efficacy of currently available therapies for postmenopausal osteoporosis. Drugs 2011; 71: 65-78
  • 112 Cummings SR, Karpf DB, Harris F. et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 2002; 112: 281-289
  • 113 Ettinger B, Black DM, Mitlak BH. et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: Results from a 3- year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 1999; 282: 637-645
  • 114 Sarkar S, Reginster JY, Crans GG. et al. Relationship between changes in biochemical markers of bone turnover and BMD to predict vertebral fracture risk. J Bone Miner Res 2004; 19: 394-401
  • 115 Eastell R, Barton I, Hannon RA. et al. Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res 2003; 18: 1051-1056
  • 116 Delmas PD, Recker RR, Chesnut 3rd CH. et al. Daily and intermittent oral ibandronate normalize bone turnover and provide significant reduction in vertebral fracture risk: Results from the BONE study. Osteoporos Int 2004; 15: 792-798
  • 117 Vasikaran S, Eastell R, Bruyere O. et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: A need for international reference standards. Osteoporos Int 2011; 22: 391-420
  • 118 Seibel MJ. Bone: reference bone turnover markers-just a fairy tale?. Nat Rev Endocrinol 2011; 7: 502-504
  • 119 Garnero P, Sornay-Rendu E, Munoz F. et al. Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study. Osteoporosis Int 2013; 24: 489-494
  • 120 Polyzos SA, Anastasilakis AD, Bratengeier C. et al. Serum sclerostin levels positively correlate with lumbar spinal bone mineral density in postmenopausal women – the six-month effect of risedronate and teriparatide. Osteoporosis Int 2012; 23: 1171-1176
  • 121 Ardawi MS, Rouzi AA, Al-Sibiani SA. et al. High serum sclerostin predicts the occurrence of osteoporotic fractures in postmenopausal women: the Center of Excellence for Osteoporosis Research Study. J Bone Miner Res 2012; 27: 2592-2602
  • 122 Reid IR. Short-term and long-term effects of osteoporosis therapies. Nat Rev Endocrinol 2015; 11: 418-428
  • 123 Chan CK, Mason A, Cooper C. et al. Novel advances in the treatment of osteoporosis. Br Med Bull 2016; 119: 129-142
  • 124 Cummings SR, San Martin J, McClung MR. et al. FREEDOM Trial. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 2009; 361: 756-765
  • 125 Papapoulos SE. Targeting sclerostin as potential treatment of osteoporosis. Ann Rheum Dis 2011; 70: 119-122
  • 126 Garnero P, Rousseau JC, Delmas PD. et al. Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases. Arthritis Rheum 2000; 43: 953-968
  • 127 Bauer DC, Hunter DJ, Abramson SB. et al. Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthritis Cartilage 2006; 14: 723-727
  • 128 Bay-Jensen AC, Reker D, Kjelgaard-Petersen CF. et al. Osteoarthritis year in review 2015: soluble biomarkers and the BIPED criteria. Osteoarthritis and Cartilage 2016; 24: 9e20
  • 129 Lotz M, Martel-Pelletier J, Christiansen C. et al. Value of biomarkers in osteoarthritis: current status and perspectives. Ann Rheum Dis 2013; 0: 1-8
  • 130 Rousseau JC, Delmas PD. Biological markers in osteoarthritis. Nat Clin Prac Rheum 2007; 3: 346-356
  • 131 Dragomir AD, Kraus VB, Renner JB. et al. Serum cartilage oligomeric matrix protein and clinical signs and symptoms of potential pre-radiographic hip and knee pathology. Osteoarthritis Cartilage 2002; 10: 687-691
  • 132 Lohmander LS, Yoshihara Y, Roos H. et al. Procollagen II C-propeptide in joint fluid: changes in concentration with age, time after knee injury, and osteoarthritis. J Rheumatol 1996; 23: 1765-1769
  • 133 Chevalier X, Conrozier X. et al. Biological markers for osteoarthritis: an update. Joint Bone Spine 2005; 72: 106-109
  • 134 Dam EB, Byrjalsen I, Karsdal MA. et al. Increased urinary excretion of Ctelopeptides of type II collagen (CTX-II) predicts cartilage loss over 21 months by MRI. Osteoarthritis Cartilage 2009; 17: 384-389
  • 135 Reijman M, Hazes JM, Bierma-Zeinstra SM. et al. A new marker for osteoarthritis: cross-sectional and longitudinal approach. Arthritis Rheum 2004; 50: 2471-2478
  • 136 Mazieres B, Garnero P, Guéguen A. et al. Molecular markers of cartilage breakdown and synovitis at baseline as predictors of structural progression of hip osteoarthritis. The ECHODIAH Cohort. Ann Rheum Dis 2006; 65: 354-359
  • 137 Garnero P, Charni N, Juillet F. et al. Increased urinary type II collagen helical and C-telopeptide levels are independently associated with a rapidly destructive hip osteoarthritis. Ann Rheum Dis 2006; 65: 1639-1644
  • 138 Garnero P, Ayral X, Rousseau JC. et al. Uncoupling of type II collagen synthesis and degradation predicts progression of joint damage in patients with knee osteoarthritis. Arthritis Rheum 2002; 46: 2613-2624
  • 139 Sharif M, Kirwan J, Charni N et al. A 5-yr longitudinal study of type IIA collagen synthesis and total type II collagen degradation in patients with knee osteoarthritis—association with disease progression. Rheumatology (Oxf) 2007
  • 140 Lohmander LS, Brandt KD, Mazzuca SA. et al. Use of the plasma stromelysin (matrix metalloproteinase 3) concentration to predict joint space narrowing in knee osteoarthritis. Arthritis Rheum 2005; 52: 3160-3167
  • 141 Sharif M, Kirwan JR, Elson CJ. et al. Suggestion of nonlinear or phasic progression of knee osteoarthritis based on measurements of serum cartilage oligomeric matrix protein levels over five years. Arthritis Rheum 2004; 50: 2479-2488
  • 142 Gineyts E, Mo JA, Ko A. et al. Effects of ibuprofen on molecular markers of cartilage and synovium turnover in patients with knee osteoarthritis. Ann Rheum Dis 2004; 63: 857-861
  • 143 Christgau S, Henrotin Y, Tankó LB. et al. Osteoarthritic patients with high cartilage turnover show increased responsiveness to the cartilage protecting effects of glucosamine sulphate. Clin Exp Rheumatol 2004; 22: 36-42
  • 144 Spector TD, Conaghan PG, Buckland-Wright JC. et al. Effect of risedronate on joint structure and symptoms of knee osteoarthritis: results of the BRISK randomized, controlled trial [ISRCTN01928173]. Arthritis Res Ther 2005; 7: R625-R633
  • 145 Manicourt DH, Azria M, Mindeholm L. et al. Oral salmon calcitonin reduces Lequesne's algofunctional index scores and decreases urinary and serum levels of biomarkers of joint metabolism in knee osteoarthritis. Arthritis Rheum 2006; 54: 3205-3211
  • 146 Christgau S, Tankó LB, Cloos PA. et al. Suppression of elevated cartilage turnover in postmenopausal women and in ovariectomized rats by estrogen and a selective estrogen-receptor modulator (SERM). Menopause 2004; 11: 508-518
  • 147 Karsdal MA, Woodworth T, Henriksen K. et al. Biochemical markers of ongoing joint damage in rheumatoid arthritis – current and future applications, limitations and opportunities. Arthritis Research and Therapy 2011; 13: 215
  • 148 Schett G, Teitelbaum SL. Osteoclasts and arthritis. J Bone Miner Res 2009; 24: 1142-1146
  • 149 Karsdal MA, Henriksen K, Leeming DJ. et al. Novel combinations of Post-Translational Modification (PTM) neo-epitopes provide tissue-specific biochemical markers – are they the cause or the consequence of the disease?. Clin Biochem 2010; 43: 793-804
  • 150 Klareskog L, van der Heijde D, de Jager JP. et al. Therapeutic effect of the 40 combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet 2004; 363: 675-681
  • 151 Vosse D, Landewe R, Garnero P. et al. Association of markers of bone- and cartilage-degradation with radiological changes at baseline and after 2 years followup in patients with ankylosing spondylitis. Rheumatology (Oxford) 2008; 47: 1219-1222
  • 152 Maksymowych WP, Landewe R, Conner-Spady B. et al. Serum matrix metalloproteinase 3 is an independent predictor of structural damage progression in patients with ankylosing spondylitis. Arthritis Rheum 2007; 56: 1846-1853
  • 153 Seibel MJ, Gartenberg F, Silverberg SJ. et al. Urinary hydroxypyridinium cross-links of collagen in primary hyperparathyroidism. J Clin Endocrinol Metabol 1992; 74: 481-486
  • 154 Reid IR, Miller P, Lyles K. et al. Comparison of a single infusion of zoledronic acid with risedronate for Paget's disease. N Engl J Med 2005; 353: 898-908
  • 155 Ton FN, Gunawardene SC, Lee H. et al. Effects of low-dose prednisone on bone metabolism. J Bone Miner Res 2005; 20: 464-470
  • 156 Blair JM, Zhou H, Seibel MJ. et al. Mechanisms of Disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nat Clin Pract Oncol 2006; 3: 41-49
  • 157 Woitge H, Pecherstorfer M, Horn E. et al. Serum bone sialoprotein as a marker of tumour burden and neoplastic bone involvement and as a prognostic factor in multiple myeloma. Br J Cancer 2001; 84: 344-351
  • 158 Chen T, Berenson J, Vescio R. et al. Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J Clin Pharmacol 2002; 42: 1228-1236
  • 159 Seibel MJ. Clinical use of markers of bone turnover in metastatic bone disease. Nat Clin Pract Oncol 2005; 2: 504-517
  • 160 Schett G. Bone formation versus bone resorption in ankylosing spondylitis. Adv Exp Med Biol 2009; 649: 114-121
  • 161 Vandooren B, Kruithof E, Yu DT. et al. Involvement of matrix metalloproteinases and their inhibitors in peripheral synovitis and down-regulation by tumor necrosis factor alpha blockade in spondylarthropathy. Arthritis Rheum 2004; 50: 2942-2953
  • 162 Gao JW, Zhang KF, Lu JS. et al. Serum matrix metalloproteinases-3 levels in patients with ankylosing spondylitis. Genet Mol Res 2015; 14: 17068-17078