Aktuelle Neurologie 2017; 44(06): 409-414
DOI: 10.1055/s-0043-111405
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Breitet sich die sporadisch auftretende amyotrophe Lateralsklerose über axonale Verbindungen aus?

Does Sporadic Amyotrophic Lateral Sclerosis Spread Via Axonal Connectivities?
H. Braak
1   Klinische Neuroanatomie/Abteilung Neurologie, Zentrum für Biomedizinische Forschung, Universität Ulm
,
M. Neumann
2   Institut für Neuropathologie, Universitätsklinikum Tübingen
3   Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Tübingen
,
A. C. Ludolph
4   Neurologische Klinik der Universität Ulm
,
K. Del Tredici
1   Klinische Neuroanatomie/Abteilung Neurologie, Zentrum für Biomedizinische Forschung, Universität Ulm
› Author Affiliations
Further Information

Publication History

Publication Date:
20 July 2017 (online)

Zusammenfassung

Der pathologische Prozess einer sporadisch auftretenden amyotrophen Lateralsklerose (sALS) ist mit dem Auftreten zytoplasmatischer Einschlusskörper eines normalerweise im Zellkern vorkommenden Proteins (TDP-43) verbunden und ergreift nur wenige Arten langaxoniger Projektionsneurone. Die Riesenpyramidenzellen von Betz im primären motorischen Neokortex und die α-Motorneurone im unteren Hirnstamm und Rückenmark sind früh ergriffene Zellformen. Im zentralen Nervensystem des Menschen sind diese beiden Zellarten durch axonale Projektionen monosynaptisch verbunden. Im Verlauf einer sALS verlieren die Zellkerne affizierter Neurone graduell ihre Immunoreaktivität für TDP-43. Bei α-Motorneuronen entstehen unlösliche TDP-43-Einschlüsse im Zellleib, während in Betz-Zellen derartige Aggregatbildungen zunächst ausbleiben. Es erscheint daher möglich, dass in Betz-Zellen anfänglich eine im Zytoplasma noch lösliche Form des TDP-43 entsteht, die in das Axoplasma gerät, über direkte synaptische Kontakte übertragen wird und im nachfolgenden Neuron erneut die Dysregulation und Aggregation des TDP-43 auslöst. Das im Verlauf einer sALS entstehende Ausbreitungsmuster der Schädigungen ist mit der Vorstellung vereinbar, dass ein zellenschädigendes Agens über axonale Kontakte von kortikalen Projektionsneuronen auf nachfolgende Neuronen übertragen wird und dort den pathologischen Prozess erneut induziert.

Abstract

The pathological process underlying sporadic amyotrophic lateral sclerosis (sALS) that is associated with the formation of cytoplasmic inclusions of a nuclear protein (TDP-43) is confined to only a few types of long-axoned projection neurons. The giant Betz pyramidal cells of the primary motor neocortex as well as large α-motor neurons of the lower brainstem and spinal cord become involved early. In the human brain, these two neuronal types are to a large extent interconnected by monosynaptic axonal projections. The cell nuclei of affected neurons gradually forfeit their normal expression of the protein TDP-43. In α-motor neurons, this nuclear loss is followed by the formation of insoluble TDP-43-immunopositive inclusions in the cytoplasm, whereas in Betz cells the loss of nuclear expression remains for an unknown period of time unaccompanied by somatodendritic and/or axoplasmic aggregations. It is possible that in cortical pyramidal cells (Betz cells) the nuclear clearing initially leads to the formation of an abnormal but still soluble cytoplasmic TDP-43 which may enter the axoplasm and, following transmission via direct synaptic contacts, induce anew TDP-43 dysregulation and aggregation in recipient neurons. The trajectory of the spreading pattern that consecutively develops during the course of sALS is consistent with the dissemination from chiefly cortical projection neurons via axonal transport through direct synaptic contacts leading to the secondary induction of TDP-43-containing inclusions within recipient nerve cells in involved subcortical regions.

 
  • Literatur

  • 1 Kiernan MC, Vucic S, Cheah BC. et al. Amyotrophic lateral sclerosis. Lancet 2011; 377: 942-955
  • 2 Ludolph A, Drory V, Hardiman O. et al. A revision of the El Escorial criteria – 2015. Amyotroph Lateral Scler Frontotemporal Degener 2015; 16: 291-292
  • 3 Al-Chalabi A, Jones A, Troakes C. et al. The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol 2012; 124: 339-352
  • 4 Rosen DR, Siddique T, Patterson D. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59-62
  • 5 Kwiatkowski Jr TJ, Bosco DA, Leclerc AL. et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009; 323: 1205-1208
  • 6 Vance C, Rogelj B, Hortobagyi T. et al. Mutations in FUS, an RNA processing protein,cause familial amyotrophic lateral sclerosis type 6. Science 2009; 323: 1208-1211
  • 7 Ratti A, Buratti E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem 2016; 138 (Suppl. 01) 95-111
  • 8 Ayala YM, Zago P, D’Ambrogio D. et al. Structural determinants of the cellular localization and shuttling of TDP-43. J Cell Sci 2008; 121: 3778-3785
  • 9 Lee S, Kim HJ. Prion-like mechanism in amyotrophic lateral sclerosis: are protein aggregates the key?. Exp Neurobiol 2015; 24: 1-7
  • 10 Neumann M, Sampathu DM, Kwong LK. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006; 314: 130-133
  • 11 Neumann M, Kwong LK, Lee EB. et al. Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 2009; 117: 137-149
  • 12 Lee EB, Lee VMY, Trojanowski JQ. Gains or losses: molecular mechanisms of TDP-43-mediated neurodegeneration. Nat Rev Neurosci 2011; 13: 38-50
  • 13 Piao YS, Wakabayashi K, Kakita A. et al. Neuropathology with clinical correlations of sporadic amyotrophic lateral sclerosis: 102 autopsy cases examined between 1962 and 2000. Brain Pathol 2003; 13: 10-22
  • 14 Brettschneider J, Del Tredici K, Toledo JB. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 2013; 74: 20-38
  • 15 Lemon RN. Descending pathways in motor control. Ann Rev Neurosci 2008; 31: 195-218
  • 16 Lemon RN. What drives corticospinal output?. F1000 Biol Rep 2010; 2: 51
  • 17 Büttner-Ennever JA. The extraocular motor nuclei: organization and functional neuroanatomy. Progr Brain Res 2006; 151: 95-125
  • 18 Horn AK, Leigh RJ. The anatomy and physiology of the ocular motor system. Hand Clin Neurol 2011; 102: 21-69
  • 19 Fatima M, Tan R, Halliday GM. et al. Spread of pathology in amyotrophic lateral sclerosis: assessment of phosphorylated TDP-43 along axonal pathways. Acta Neuropathol Commun 2015; 3: 47
  • 20 Kassubek J, Müller H-P, Del Tredici K. et al. Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns of TDP-43 pathology. Brain 2014; 137: 1733-1740
  • 21 Müller HP, Turner MR, Grosskreutz J. et al. A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2016; 87: 570-579
  • 22 Schulthess I, Gorges M, Müller H-P. et al. Functional connectivity changes resemble patterns of pTDP-43 pathology in amyotrophic lateral sclerosis. Sci Rep 2016; 6: 38391
  • 23 Schmidt R, de Reus MA, Scholtens LH. et al. Simulating disease propagation across white matter connectome reveals anatomical substrate for neuropathology staging in amyotrophic lateral sclerosis. NeuroImage 2016; 124: 762-769
  • 24 Hornberger M, Kiernan MC. Emergence of an imaging biomarker for amyotrophic lateral sclerosis: is the end point near?. J Neurol Neurosurg Psychiatry 2016; 87: 569
  • 25 Kushchayev SV, Moskalenko VF, Wiener PC. et al. The discovery of the pyramidal neurons: Vladimir Betz and a new era of neuroscience. Brain 2012; 135: 285-300
  • 26 Habas C, Cabanis EA. Cortical projections to the human red nucleus: a diffusion tensor tractography study with a 1. 5-T MRI machine. Neuroradiol 2006; 48: 755-762
  • 27 Zhang H, Tan CF, Mori F. et al. TDP-43 immunoreactive neuronal and glial inclusions in the neostriatum in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol 2008; 115: 115-122
  • 28 Wightman G, Anderson VER, Martin J. et al. Hippocampal and neocortical ubiquitin-immunoreactive inclusions in amyotrophic lateral sclerosis with dementia. Neurosci Lett 1992; 139: 269-274
  • 29 Braak H, Brettschneider J, Ludolph AC. et al. Amyotrophic lateral sclerosis – a model of corticofugal axonal spread. Nat Rev Neurol 2013; 9: 708-714
  • 30 Fallini C, Bassell G, Rossoll W. The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. Hum Mol Genet 2012; 21: 3708-3718
  • 31 Saper CB, Wainer BH, German DC. Axonal and transneuronal transport in the transmission of neurological disease: potential role of system degenerations, including Alzheimer’s disease. Neuroscience 1989; 23: 389-398
  • 32 Braak H, Ludolph AC, Neumann M. et al. Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal α-motoneurons in sporadic amyotrophic lateral sclerosis. Acta Neuropathol 2017; 133: 79-90
  • 33 Braak H, Ludolph AC, Thal DR. et al. Amyotrophic lateral sclerosis: Dash-like inclusions of phosphorylated TDP-43 in somatodendritic and axonal compartments of somatomotor neurons of the lower brainstem and spinal cord. Acta Neuropathol 2010; 120: 67-74
  • 34 Eisen A, Weber M. The motor cortex and amyotrophic lateral sclerosis. Muscle Nerve 2001; 24: 564-579
  • 35 Charcot J-M. Sclérose latéral amyotrophique. In: Œuvres Complètes. Paris: Bureaux du Progrès Médical; 1874. Vol. 2: 249-266
  • 36 Jin J, Hu F, Zhang Q. et al. Hyperintensity of corticospinal tract on FLAIR: A simple and sensitive objective upper motor neuron degeneration marker in clinically verified amyotrophic lateral sclerosis. J Neurol Sci 2016; 367: 177-183
  • 37 Feiler MS, Strobel B, Freischmidt A. et al. TDP-43 is intercellularly transmitted across axon terminals. J Cell Biol 2015; 211: 897-911
  • 38 Grad LI, Fernando SM, Cashman NR. From molecule to molecule and cell to cell: prion-like mechanisms in amyotrophic lateral sclerosis. Neurobiol Dis 2015; 77: 257-265
  • 39 Guo L, Shorter J. Biology and pathobiology of TDP-43 and emergent therapeutic strategies. Cold Spring Harb Perspect Med 2016; pii a024554
  • 40 Smethurst P, Sidle KCL, Hardy J. Review: Prion-like mechanisms of transactive response DNA binding protein of 43 kDa (TDP-43) in amyotrophic lateral sclerosis (ALS). Neuropathol Appl Neurobiol 2015; 41: 578-597
  • 41 Smethurst P, Newcombe J, Troakes C. et al. In vitro prion-like behaviour of TDP-43 in ALS. Neurobiol Dis 2016; 96: 236-247
  • 42 Kanouchi T, Ohkubo T, Yokota T. Can regional spreading of amyotrophic lateral sclerosis motor symptoms be explained by prion-like propagation?. J Neurol Neurosurg Psychiatry 2012; 83: 739-745
  • 43 Ravits JM, La Spada AR. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 2009; 73: 805-811
  • 44 Talman P, Duong T, Vucic S. et al. Identification and outcomes of clinical phenotypes in amyotrophic lateral sclerosis/motor neuron disease: Australian National Motor Neuron Disease observational cohort. BJM Open 2016; 6: e01205
  • 45 Gamez J, Cervera C, Codina A. Flail arm syndrome of Vulpian-Bernhartʼs form of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 1999; 67: 258
  • 46 Wijesekera C, Mathers S, Talman P. et al. Natural history and clinical features of the flail arm and flail leg ALS variants. Neurology 2009; 72: 1087-1094
  • 47 Schuster C, Kasper E, Machts J. et al. Focal thinning of the motor cortex mirrors clinical features of amyotrophic lateral sclerosis and their phenotypes: a neuroimaging study. J Neurol 2013; 260: 2856-2864
  • 48 Wilbourn AJ. The “split hand syndrome”. Muscle Nerve 2000; 23: 138
  • 49 Simon NG, Lee M, Bae JS. et al. Dissociated lower limb muscle involvement in amyotrophic lateral sclerosis. J Neurol 2015; 262: 1424-1432
  • 50 Weber M, Eisen A, Stewart H. et al. The split hand in ALS has a cortical basis. J Neurol Sci 2000; 180: 66-70
  • 51 Menon P, Bae JS, Mioshi E. et al. Split-hand plus sign in ALS: differential involvement of the flexor pollicis longus and intrinsic hand muscles. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14: 315-318
  • 52 Menon P, Kiernan MC, Vucic S. Cortical dysfunction underlies the development of the split-hand in amyotrophic lateral sclerosis. PLoS One 2014; 9: e87124
  • 53 Menon P, Kiernan MC, Vucic S. ALS pathophysiology: insights from the split- hand phenomenon. Clin Neurophysiol 2014; 125: 186-193
  • 54 Eisen A, Turner MR, Lemon R. Tools and talk: An evolutionary perspective on the functional deficits associated with amyotrophic lateral sclerosis. Muscle Nerve 2014; 49: 469-477
  • 55 Menon P, Geevasinga N, Yiannikas C. et al. Cortical contributions to the flail leg syndrome: Pathophysiological insights. Amyotroph Lateral Scler Frontotemporal Degener 2016; 17: 389-396
  • 56 Sasaki S, Iwata M. Motor neuron disease with predominantly upper extremity involvement: a clinicopathological study. Acta Neuropathol 1999; 98: 645-650
  • 57 Hino S, Sasaki S. Flail arm syndrome with cytoplasmic vacuoles in remaining anterior horn motor neurons: A peculiar variant of amyotrophic lateral sclerosis. Neuropathology 2015; 35: 582-586