Horm Metab Res 2017; 49(09): 701-706
DOI: 10.1055/s-0043-113829
Endocrine Research
© Georg Thieme Verlag KG Stuttgart · New York

Impact of Aldosterone Synthase Inhibitor FAD286 on Steroid Hormone Profile in Human Adrenocortical Cells

Coy Brunssen*
1   Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
,
Anja Hofmann*
1   Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
,
Mirko Peitzsch
2   Division of Clinical Neurochemistry, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
,
Annika Frenzel
1   Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
,
Christian G. Ziegler
3   Paul Langerhans Institute Dresden of the Helmholtz-Zentrum München at the Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
4   German Center for Diabetes Research e.V., Neuherberg, Germany
,
Nicholas F. Brown
5   Cardio Metabolic Diseases, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
,
Steven M. Weldon
5   Cardio Metabolic Diseases, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
,
Graeme Eisenhofer
2   Division of Clinical Neurochemistry, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
6   Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
,
Holger S. Willenberg
7   Division of Endocrinology and Metabolism, Rostock University Medical Center, Rostock, Germany
,
Stefan R. Bornstein
6   Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
8   Endocrinology and Diabetes, Division of Diabetes & Nutritional Sciences, Rayne Institute, Denmark Hill Campus, Faculty of Life Sciences & Medicine, Kings College London, London, UK
,
Henning Morawietz
1   Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
6   Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
› Author Affiliations
Further Information

Publication History

received 21 January 2017

accepted 12 June 2017

Publication Date:
31 July 2017 (online)

Abstract

Inhibition of aldosterone synthase (CYP11B2) is an alternative treatment option to mineralocorticoid receptor antagonism to prevent harmful aldosterone effects. FAD286 is the best characterized aldosterone synthase inhibitor. However, to date, no study has used sensitive liquid chromatography-tandem mass spectrometry to characterize in detail the effect of FAD286 on the secreted steroid hormone profile of adrenocortical cells. Basal aldosterone production in NCI-H295R cells was detectable and 9-fold elevated after stimulation with angiotensin II. FAD286 inhibited this increase, showing a maximal effect at 10 nmol/l. Higher concentrations of FAD286 did not further reduce aldosterone concentrations, but showed a parallel reduction in corticosterone, cortisol and cortisone levels, reflecting additional inhibition of steroid-11β-hydroxylase (CYP11B1). Pregnenolone, progesterone and 17-OH-progesterone levels remained unaffected. In conclusion, the aldosterone synthase inhibitor FAD286 lowers angiotensin II-induced aldosterone concentrations in adrenocortical cells but the relative lack of selectivity over CYP11B1 is evident at higher FAD286 concentrations.

* These authors contributed equally to this study


 
  • References

  • 1 Deinum J, Riksen NP, Lenders JW. Pharmacological treatment of aldosterone excess. Pharmacol Ther 2015; 154: 120-133
  • 2 Rossier BC, Baker ME, Studer RA. Epithelial sodium transport and its control by aldosterone: The story of our internal environment revisited. Physiol Rev 2015; 95: 297-340
  • 3 Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BM. Renin-angiotensin system and cardiovascular risk. Lancet 2007; 369: 1208-1219
  • 4 Eklind-Cervenka M, Benson L, Dahlstrom U, Edner M, Rosenqvist M, Lund LH. Association of candesartan vs losartan with all-cause mortality in patients with heart failure. JAMA 2011; 305: 175-182
  • 5 Hofmann A, Brunssen C, Peitzsch M, Martin M, Mittag J, Jannasch A, Engelmann F, Brown NF, Weldon SM, Huber J, Streicher R, Deussen A, Eisenhofer G, Bornstein SR, Morawietz H. Aldosterone Synthase Inhibition Improves Glucose Tolerance in Zucker Diabetic Fatty (ZDF) Rats. Endocrinology 2016; 157: 3844-3855
  • 6 Engeli S, Bohnke J, Gorzelniak K, Janke J, Schling P, Bader M, Luft FC, Sharma AM. Weight loss and the renin-angiotensin-aldosterone system. Hypertension 2005; 45: 356-362
  • 7 Funder JW. Minireview: Aldosterone and the cardiovascular system: genomic and nongenomic effects. Endocrinology 2006; 147: 5564-5567
  • 8 Luther JM, Brown NJ. The renin-angiotensin-aldosterone system and glucose homeostasis. Trends Pharmacol Sci 2011; 32: 734-739
  • 9 Azizi M, Amar L, Menard J. Aldosterone synthase inhibition in humans. Nephrol Dial Transplant 2013; 28: 36-43
  • 10 Rigel DF, Fu F, Beil M, Hu CW, Liang G, Jeng AY. Pharmacodynamic and pharmacokinetic characterization of the aldosterone synthase inhibitor FAD286 in two rodent models of hyperaldosteronism: Comparison with the 11beta-hydroxylase inhibitor metyrapone. J Pharmacol Exp Ther 2010; 334: 232-243
  • 11 Menard J, Gonzalez MF, Guyene TT, Bissery A. Investigation of aldosterone-synthase inhibition in rats. J Hypertens 2006; 24: 1147-1155
  • 12 Ménard J, Pascoe L. Can the dextroenantiomer of the aromatase inhibitor fadrozole be useful for clinical investigation of aldosterone-synthase inhibition?. Journal of Hypertension 2006; 24: 993-997
  • 13 Menard J, Rigel DF, Watson C, Jeng AY, Fu F, Beil M, Liu J, Chen W, Hu CW, Leung-Chu J, LaSala D, Liang G, Rebello S, Zhang Y, Dole WP. Aldosterone synthase inhibition: Cardiorenal protection in animal disease models and translation of hormonal effects to human subjects. J Transl Med 2014; 12: 340
  • 14 Amar L, Azizi M, Menard J, Peyrard S, Watson C, Plouin PF. Aldosterone synthase inhibition with LCI699: A proof-of-concept study in patients with primary aldosteronism. Hypertension 2010; 56: 831-838
  • 15 Ehmer PB, Bureik M, Bernhardt R, Muller U, Hartmann RW. Development of a test system for inhibitors of human aldosterone synthase (CYP11B2): Screening in fission yeast and evaluation of selectivity in V79 cells. J Steroid Biochem Mol Biol 2002; 81: 173-179
  • 16 Yin L, Hu Q, Hartmann RW. 3-Pyridyl substituted aliphatic cycles as CYP11B2 inhibitors: Aromaticity abolishment of the core significantly increased selectivity over CYP1A2. PLoS One 2012; 7: e48048
  • 17 Muller-Vieira U, Angotti M, Hartmann RW. The adrenocortical tumor cell line NCI-H295R as an in vitro screening system for the evaluation of CYP11B2 (aldosterone synthase) and CYP11B1 (steroid-11beta-hydroxylase) inhibitors. J Steroid Biochem Mol Biol 2005; 96: 259-270
  • 18 Fiebeler A, Nussberger J, Shagdarsuren E, Rong S, Hilfenhaus G, Al-Saadi N, Dechend R, Wellner M, Meiners S, Maser-Gluth C, Jeng AY, Webb RL, Luft FC, Muller DN. Aldosterone synthase inhibitor ameliorates angiotensin II-induced organ damage. Circulation 2005; 111: 3087-3094
  • 19 LaSala D, Shibanaka Y, Jeng AY. Coexpression of CYP11B2 or CYP11B1 with adrenodoxin and adrenodoxin reductase for assessing the potency and selectivity of aldosterone synthase inhibitors. Anal Biochem 2009; 394: 56-61
  • 20 Rainey WE, Saner K, Schimmer BP. Adrenocortical cell lines. Mol Cell Endocrinol 2004; 228: 23-38
  • 21 Mangelis A, Dieterich P, Peitzsch M, Richter S, Juhlen R, Hubner A, Willenberg HS, Deussen A. Lenders JW, Eisenhofer G. Computational analysis of liquid chromatography-tandem mass spectrometric steroid profiling in NCI H295R cells following angiotensin II, forskolin and abiraterone treatment. J Steroid Biochem Mol Biol 2016; 155: 67-75
  • 22 Lichtenauer UD, Shapiro I, Osswald A, Meurer S, Kulle A, Reincke M, Riepe F, Beuschlein F. Characterization of NCI-H295R cells as an in vitro model of hyperaldosteronism. Horm Metab Res 2013; 45: 124-129
  • 23 Peitzsch M, Dekkers T, Haase M, Sweep FC, Quack I, Antoch G, Siegert G, Lenders JW, Deinum J, Willenberg HS, Eisenhofer G. An LC-MS/MS method for steroid profiling during adrenal venous sampling for investigation of primary aldosteronism. J Steroid Biochem Mol Biol 2015; 145: 75-84
  • 24 Langbein H, Brunssen C, Hofmann A, Cimalla P, Brux M, Bornstein SR, Deussen A, Koch E, Morawietz H. NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice. Eur Heart J 2016; 37: 1753-1761
  • 25 Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45
  • 26 Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, Langenbach J, Willenberg HS, Barthel A, Hauner H, McCann SM, Scherbaum WA, Bornstein SR. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci USA 2003; 100: 14211-14216
  • 27 Denner K, Rainey WE, Pezzi V, Bird IM, Bernhardt R, Mathis JM. Differential regulation of 11 beta-hydroxylase and aldosterone synthase in human adrenocortical H295R cells. Mol Cell Endocrinol 1996; 121: 87-91
  • 28 Bird IM, Mason JI, Rainey WE. Regulation of type 1 angiotensin II receptor messenger ribonucleic acid expression in human adrenocortical carcinoma H295 cells. Endocrinology 1994; 134: 2468-2474
  • 29 Lassegue B, Alexander RW, Nickenig G, Clark M, Murphy TJ, Griendling KK. Angiotensin II down-regulates the vascular smooth muscle AT1 receptor by transcriptional and post-transcriptional mechanisms: Evidence for homologous and heterologous regulation. Mol Pharmacol 1995; 48: 601-609
  • 30 Hansen M, Jacobsen NW, Nielsen FK, Bjorklund E, Styrishave B, Halling-Sorensen B. Determination of steroid hormones in blood by GC-MS/MS. Anal Bioanal Chem 2011; 400: 3409-3417
  • 31 Holst JP, Soldin OP, Guo T, Soldin SJ. Steroid hormones: Relevance and measurement in the clinical laboratory. Clin Lab Med 2004; 24: 105-118
  • 32 Takeda Y, Miyamori I, Yoneda T, Hatakeyama H, Inaba S, Furukawa K, Mabuchi H, Takeda R. Regulation of aldosterone synthase in human vascular endothelial cells by angiotensin II and adrenocorticotropin. J Clin Endocrinol Metab 1996; 81: 2797-2800
  • 33 Rabano M, Pena A, Brizuela L, Macarulla JM, Gomez-Munoz A, Trueba M. Angiotensin II-stimulated cortisol secretion is mediated by phospholipase D. Mol Cell Endocrinol 2004; 222: 9-20
  • 34 Hecker M, Newsted JL, Murphy MB, Higley EB, Jones PD, Wu R, Giesy JP. Human adrenocarcinoma (H295R) cells for rapid in vitro determination of effects on steroidogenesis: hormone production. Toxicol Appl Pharmacol 2006; 217: 114-124
  • 35 Tamada H, Shimizu Y, Inaba T, Kawate N, Sawada T. The effects of the aromatase inhibitor fadrozole hydrochloride on fetuses and uteri in late pregnant rats. J Endocrinol 2004; 180: 337-345
  • 36 Johnson MC, Vega M, Vantman D, Troncoso JL, Devoto L. Regulatory role of angiotensin II on progesterone production by cultured human granulosa cells. Expression of angiotensin II type-2 receptor. Mol Hum Reprod 1997; 3: 663-668