Z Orthop Unfall 2017; 155(06): 670-682
DOI: 10.1055/s-0043-116218
Originalarbeit
Georg Thieme Verlag KG Stuttgart · New York

Biologische Rekonstruktion lokalisiert vollschichtiger Knorpelschäden des Hüftgelenks: Empfehlungen der Arbeitsgemeinschaft „Klinische Geweberegeneration“ der DGOU und des Hüftkomitees der AGA

Biologic Reconstruction of Full Sized Cartilage Defects of the Hip: A Guideline from the DGOU Group “Clinical Tissue Regeneration” and the Hip Committee of the AGA
Stefan Fickert
1   Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, sporthopaedicum Straubing/Regensburg, Straubing
,
Matthias Aurich
2   Zentrum für Orthopädie und Unfallchirurgie, Klinikum Ingolstadt GmbH
,
Dirk Albrecht
3   Chirurgie, Klinik im Kronprinzenbau, Reutlingen
,
Peter Angele
4   Abteilung für Unfallchirurgie, Universitätsklinikum Regensburg
,
Lorenz Büchler
5   Orthopädische Klinik, Spitalzentrum Biel AG, Schweiz
,
Michael Dienst
6   Hüftchirurgie, OCM München
,
Christoph Erggelet
7   alphaclinic Zürich, Universität Freiburg, Zürich, Schweiz
,
Jürgen Fritz
8   Orthopädie und Unfallchirurgie, Orthopädisch Chirurgisches Centrum, Tübingen
,
Christoph Gebhart
9   Zentrum für minimal invasive Hüftchirurgie, Vienna International Health Center, Wien, Österreich
,
Hans Gollwitzer
10   Praxis für Hüft- und Knieendoprothetik, gelenkerhaltende Hüftchirurgie, ATOS Klinik München
,
Moritz Kindler
11   Klinik für arthroskopische Chirurgie, Sporttraumatologie und Sportmedizin, BG Klinikum Duisburg
,
Christoph Lampert
12   Hüftchirurgie, Orthopädie am Rosenberg Heiden AG, Sankt Gallen, Schweiz
,
Henning Madry
13   Zentrum für Experimentelle Orthopädie, Universitätsklinikum des Saarlandes, Homburg/Saar
,
Gregor Möckel
14   Medizinisches Versorgungszentrum – Praxisklinik Berlin Kaulsdorf, Arthropädicum, Berlin
,
Phillip Niemeyer
15   Klinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Freiburg
16   Orthopädische Chirurgie München, OCM
,
Jörg Schröder
17   Centrum für Muskuloskeletale Chirurgie, Charité – Universitätsmedizin Berlin
,
Christian Sobau
18   Orthopädie, Arcus Kliniken Pforzheim
,
Gunter Spahn
19   Unfallchirurgie und Orthopädie, Praxisklinik für Unfallchirurgie und Orthopädie, Eisenach
20   Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Jena
,
Wolfgang Zinser
21   Klinik für Orthopädie und Unfallchirurgie, St. Vinzenz-Hospital Dinslaken
,
Stefan Landgraeber
22   Klinik für Orthopädie und Unfallchirurgie, Universität Duisburg-Essen, Essen
› Author Affiliations
Further Information

Publication History

Publication Date:
15 September 2017 (online)

Zusammenfassung

Hintergrund Symptomatisch präarthrotische Deformitäten wie das femoroazetabuläre Impingement (FAI) oder die Hüftdysplasie führen häufig zu lokalisierten Knorpeldefekten und nachfolgend zur Entstehung einer Koxarthrose. In der vorliegenden Arbeit werden die derzeitigen Methoden und Erkenntnisse zur Diagnose und operativen Behandlung von Knorpelläsionen dargestellt, um hieraus geeignete Therapieempfehlungen für das Hüftgelenk abzuleiten.

Material und Methoden Übersichtsarbeit zur Ätiologie und Therapie von Knorpelschäden am Hüftgelenk unter Berücksichtigung der aktuellen Literatur mit Darstellung der Studienlage und der Diskussion von Vor- und Nachteilen verschiedener operativer Verfahren zum Gelenkerhalt.

Ergebnisse In den meisten der bisher publizierten Studien zur operativen Behandlung von Knorpelschäden des Hüftgelenks wurden Defekte behandelt, die am Azetabulum durch ein FAI vom Cam-Typ ausgelöst werden. Ihre Entstehung kann durch rechtzeitige Beseitigung der pathologisch relevanten Deformitäten verhindert werden. Für die Therapie bereits bestehender vollschichtiger Knorpelläsionen werden derzeit fast ausschließlich knochenmarkstimulierende Techniken und die matrixgekoppelte autologe Knorpelzelltransplantation (MACT) eingesetzt. Für die Hüfte existieren zu diesen Verfahren bisher nur Studien auf geringem Evidenzniveau, was vor allem in der noch jungen Historie der Knorpelchirurgie in diesem Gelenk begründet ist. Allerdings ist schon jetzt zu erkennen, dass sich einige Erfahrungen mit den genannten Methoden vom Knie auf die Hüfte übertragen lassen.

Schlussfolgerung Bei umschriebenen und vollschichtigen Knorpelschäden ab 1,5 – 2 cm2 stellt die MACT das zu bevorzugende Therapieverfahren dar, sofern keine wesentliche Gelenkdegeneration besteht. Ähnlich wie im Knie kann keine gesicherte obere Altersgrenze für einen gelenkerhaltenden Eingriff oder eine MACT im Hüftgelenk festgelegt werden, da das numerische nicht zwangsläufig mit dem biologischen Patientenalter bzw. Gelenkzustand korreliert. Wie für andere Gelenke auch, sind Langzeitbeobachtungen und die Durchführung prospektiv randomisierter Studien anzuraten.

Abstract

Background Symptomatic pre-arthritic deformities such as femoroacetabular impingement (FAI) or hip dysplasia often lead to localised cartilage defects and subsequently to osteoarthritis. The present review of the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU) and the hip committee of the AGA (German speaking Society for Arthroscopy and Joint Surgery) provides an overview of current knowledge of the diagnosis and surgical treatment of cartilage defects, in order to infer appropriate therapy recommendations for the hip.

Methods Review of FAI and resultant cartilage damage in the hip as reported in published study findings in the literature and discussion of the advantages and disadvantages of different surgical procedures to preserve the joint.

Results Most published studies on the surgical treatment of cartilage damage in the hip report defects caused by cam-type FAI at the acetabulum. Development of these defects can be prevented by timely elimination of the relevant deformities. At present, current full-thickness cartilage defects are mostly treated with bone marrow-stimulating techniques such as microfracture (MFx), with or without a biomaterial, and matrix-assisted autologous chondrocyte transplantation (MACT). Osteochondral autologous transplantation (OAT) is not the treatment of choice for isolated full-thickness chondral defects at the hip, because of the unfavourable risk-benefit profile. Due to the relatively short history of cartilage repair surgery on the hip, the studies available on these procedures have low levels of evidence. However, it is already becoming obvious that the experience gained with the same procedures on the knee can be applied to the hip as well. For example, limited healing and regeneration of chondral defects after MFx can also be observed at the hip joint.

Conclusions The cartilage surface of the acetabulum, where FAI-related chondral lesions appear, is considerably smaller than the weight-bearing cartilage surface of the knee joint. However, as in the knee joint, MACT is the therapy of choice for full-thickness cartilage defects of more than 1.5 – 2 cm2. Minimally invasive types of MACT (e.g. injectable chondrocyte implants) should be preferred in the hip joint. In cases where a single-stage procedure is indicated or there are other compelling reasons for not performing a MACT, a bone marrow-stimulating technique in combination with a biomaterial covering is preferable to standard MFx. For treatment of lesions smaller than 1.5 – 2 cm2 the indication for a single-stage procedure is wider. As with defects in the knee, it is not possible to determine a definite upper age limit for joint-preserving surgery or MACT in the hip, as the chronological age of patients does not necessarily correlate with their biological age or the condition of their joints. Advanced osteoarthritis of the hip is a contraindication for any kind of hip-preserving surgery. Long-term observations and prospective randomised studies like those carried out for other joints are necessary.

 
  • Literatur

  • 1 Behrens P, Bosch U, Bruns J. et al. [Indications and implementation of recommendation of the working group “Tissue Regeneration and Tissue Substitution” for autologous chondrocyte transplantation]. Z Orthop Ihre Grenzgeb 2004; 142: 529-539
  • 2 Niemeyer P, Albrecht D, Andereya S. et al. Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee 2016; 23: 426-435
  • 3 Biant LC, McNicholas MJ, Sprowson AP. et al. The surgical management of symptomatic articular cartilage defects of the knee: consensus statements from United Kingdom knee surgeons. Knee 2015; 22: 446-449
  • 4 Van der Linden MH, Saris D, Bulstra SK. et al. [Treatment of cartilaginous defects in the knee: recommendations from the Dutch Orthopaedic Association]. Ned Tijdschr Geneeskd 2013; 157: A5719
  • 5 Aurich M, Albrecht D, Angele P. et al. [Treatment of osteochondral lesions in the ankle: a guideline from the group „Clinical Tissue Regeneration“ of the German Society of Orthopaedics and Traumatology (DGOU)]. Z Orthop Unfall 2017; 155: 92-99
  • 6 Murphy NJ, Eyles JP, Hunter DJ. Hip osteoarthritis: Etiopathogenesis and implications for management. Adv Ther 2016; 33: 1921-1946
  • 7 Frank JM, Harris JD, Erickson BJ. et al. Prevalence of femoroacetabular impingement imaging findings in asymptomatic volunteers: a systematic review. Arthroscopy 2015; 31: 1199-1204
  • 8 Kuhns BD, Weber AE, Levy DM. et al. The natural history of femoroacetabular impingement. Front Surg 2015; 2: 58
  • 9 Clohisy JC, Knaus ER, Hunt DM. et al. Clinical presentation of patients with symptomatic anterior hip impingement. Clin Orthop Relat Res 2009; 467: 638-644
  • 10 Claßen T, Körsmeier K, Kamminga M. et al. Is early treatment of cam-type femoroacetabular impingement the key to avoiding associated full thickness isolated chondral defects?. Knee Surg Sports Traumatol Arthrosc 2016; 24: 2332-2337
  • 11 Klennert BJ, Ellis BJ, Maak TG. et al. The mechanics of focal chondral defects in the hip. J Biomech 2017; 52: 31-37
  • 12 Fickert S. Hüftgelenk. In: Fritz J, Albrecht D, Niemeyer P. Hrsg. Knorpeltherapie. Praxisleitfaden der AG Klinische Geweberegeneration der DGOU. Berlin/Boston: De Gruyter; 2016: 255-266
  • 13 Crawford K, Philippon MJ, Sekiya JK. et al. Microfracture of the hip in athletes. Clin Sports Med 2006; 25: 327-335
  • 14 Pacheco-Carrillo A, Medina-Porqueres I. Physical examination tests for the diagnosis of femoroacetabular impingement. A systematic review. Phys Ther Sport 2016; 21: 87-93
  • 15 Tannast M, Siebenrock KA, Anderson SE. Femoroacetabular impingement: radiographic diagnosis–what the radiologist should know. AJR Am J Roentgenol 2007; 188: 1540-1552
  • 16 Tannast M, Hanke MS, Zheng G. et al. What are the radiographic reference values for acetabular under- and overcoverage?. Clin Orthop Relat Res 2015; 473: 1234-1246
  • 17 Lazik A, Körsmeier K, Claßen T. et al. 3 Tesla high-resolution and delayed gadolinium enhanced MR imaging of cartilage (dGEMRIC) after autologous chondrocyte transplantation in the hip. J Magn Reson Imaging 2015; 42: 624-633
  • 18 Keeney JA, Peelle MW, Jackson J. et al. Magnetic resonance arthrography versus arthroscopy in the evaluation of articular hip pathology. Clin Orthop Relat Res 2004; 429: 163-169
  • 19 Jordan MA, Van Thiel GS, Chahal J. et al. Operative treatment of chondral defects in the hip joint: a systematic review. Curr Rev Musculoskelet Med 2012; 5: 244-253
  • 20 Philippon MJ, Stubbs AJ, Schenker ML. et al. Arthroscopic management of femoroacetabular impingement: osteoplasty technique and literature review. Am J Sports Med 2007; 35: 1571-1580
  • 21 Ilizaliturri jr. VM, Byrd JW, Sampson TG. et al. A geographic zone method to describe intra-articular pathology in hip arthroscopy: cadaveric study and preliminary report. Arthroscopy 2008; 24: 534-539
  • 22 Konan S, Rayan F, Meermans G. et al. Validation of the classification system for acetabular chondral lesions identified at arthroscopy in patients with femoroacetabular impingement. J Bone Joint Surg Br 2011; 93: 332-336
  • 23 Philippon MJ, Michalski MP, Campbell KJ. et al. An anatomical study of the acetabulum with clinical applications to hip arthroscopy. J Bone Joint Surg Am 2014; 96: 1673-1682
  • 24 Moran CJ, Pascual-Garrido C, Chubinskaya S. et al. Restoration of articular cartilage. J Bone Joint Surg Am 2014; 96: 336-344
  • 25 McCarthy J, Mc Millan S. Arthroscopy of the hip: factors affecting outcome. Orthop Clin North Am 2013; 44: 489-498
  • 26 Byrd JW, Jones KS. Microfracture for grade IV chondral lesions of the hip. Arthroscopy 2004; 20: e41
  • 27 Harris JD, Erickson BJ, Bush-Joseph CA. Treatment of femoroacetabular impingement: a systematic review. Curr Rev Musculoskelet Med 2013; 6: 207-218
  • 28 Schilders E, Dimitrakopoulou A, Bismil Q. et al. Arthroscopic treatment of labral tears in femoroacetabular impingement: a comparative study of refixation and resection with a minimum two-year follow-up. J Bone Joint Surg Br 2011; 93: 1027-1032
  • 29 Larson CM, Giveans MR, Stone RM. Arthroscopic debridement versus refixation of the acetabular labrum associated with femoroacetabular impingement: mean 3.5-year follow-up. Am J Sports Med 2012; 40: 1015-1021
  • 30 Byrd JW, Jones KS. Prospective analysis of hip arthroscopy with 10-year followup. Clin Orthop Relat Res 2010; 468: 741-746
  • 31 Horisberger M, Brunner A, Herzog RF. Arthroscopic treatment of femoral acetabular impingement in patients with preoperative generalized degenerative changes. Arthroscopy 2010; 26: 623-629
  • 32 Comba F, Yacuzzi C, Ali PJ. et al. Joint preservation after hip arthroscopy in patients with FAI. Prospective analysis with a minimum follow-up of seven years. Muscles Ligaments Tendons J 2016; 6: 317-323
  • 33 Zhang D, Chen L, Wang G. Hip arthroscopy versus open surgical dislocation for femoroacetabular impingement: a systematic review and meta-analysis. Medicine (Baltimore) 2016; 95: e5122
  • 34 Dienst M, Kohn D. Arthroskopische Behandlung des femoroazetabulären Impingements. Technik und Ergebnisse. Orthopäde 2009; 38: 429-443
  • 35 Matsuda DK, Safran MR. Arthroscopic internal fixation of osteochondritis dissecans of the femoral head. Orthopedics 2013; 36: e683-e686
  • 36 Stafford GH, Bunn JR, Villar RN. Arthroscopic repair of delaminated acetabular articular cartilage using fibrin adhesive. Results at one to three years. Hip Int 2011; 21: 744-750
  • 37 Thorey F, Budde S, Ezechieli M. et al. Feasibility of arthroscopic placement of autologous matrix-induced chondrogenesis grafts in the cadaver hip joint. Orthop Rev (Pavia) 2013; 5: e26
  • 38 Mithoefer K, McAdams T, Williams RJ. et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med 2009; 37: 2053-2063
  • 39 Von Keudell A, Atzwanger J, Forstner R. et al. Radiological evaluation of cartilage after microfracture treatment: a long-term follow-up study. Eur J Radiol 2012; 81: 1618-1624
  • 40 Goyal D, Keyhani S, Lee EH, Hui JH. Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy 2013; 29: 1579-1588
  • 41 Ross AW, Murawski CD, Fraser EJ. Autologous osteochondral transplantation for osteochondral lesions of the talus: does previous bone marrow stimulation negatively affect clinical outcome?. Arthroscopy 2016; 32: 1377-1383
  • 42 Minas T, Von Keudell A, Bryant T. et al. The John Insall Award: A minimum 10-year outcome study of autologous chondrocyte implantation. Clin Orthop Relat Res 2014; 472: 41-51
  • 43 Biant LC, Bentley G, Vijayan S. et al. Long-term results of autologous chondrocyte implantation in the knee for chronic chondral and osteochondral defects. Am J Sports Med 2014; 42: 2178-2183
  • 44 MacDonald AE, Bedi A, Horner NS. et al. Indications and outcomes for microfracture as an adjunct to hip arthroscopy for treatment of chondral defects in patients with femoroacetabular impingement: a systematic review. Arthroscopy 2016; 32: 190-200.e2
  • 45 Green CJ, Beck A, Wood D. et al. The biology and clinical evidence of microfracture in hip preservation surgery. J Hip Preserv Surg 2016; 3: 108-123
  • 46 Philippon MJ, Schenker ML, Briggs KK. Can microfracture produce repair tissue in acetabular chondral defects?. Arthroscopy 2008; 24: 46-50
  • 47 Karthikeyan S, Roberts S, Griffin D. Microfracture for acetabular chondral defects in patients with femoroacetabular impingement: results at second-look arthroscopic surgery. Am J Sports Med 2012; 40: 2725-2730
  • 48 Domb BG, Gupta A, Dunne KF. Microfracture in the hip: results of a matched-cohort controlled study with 2-year follow-up. Am J Sports Med 2015; 43: 1865-1874
  • 49 Trask DJ, Keene JS. Analysis of the current indications for microfracture of chondral lesions in the hip joint. Am J Sports Med 2016; 44: 3070-3076
  • 50 Fontana A, de Girolamo L. Sustained five-year benefit of autologous matrix-induced chondrogenesis for femoral acetabular impingement-induced chondral lesions compared with microfracture treatment. Bone Joint J 2015; 97-B: 628-635
  • 51 Aprato A, Jayasekera N, Villar RN. Does the modified Harris hip score reflect patient satisfaction after hip arthroscopy?. Am J Sports Med 2012; 40: 2557-2560
  • 52 Somers JFA, Goeminne S. Arthroscopic treatment of acetabular cartilage lesions in CAM-type hip impingement with AMIC vs. microfracturing. Abstracts of the 13th World Congress of the International Cartilage Repair Society. Naples, Italy, 24 – 27 September, 2016.
  • 53 Deng Z, Jin J, Zhao J. et al. Cartilage defect treatments: with or without cells? Mesenchymal stem cells or chondrocytes? Traditional or matrix-assisted? A systematic review and meta-analyses. Stem Cells Int 2016; 2016: 9201492
  • 54 Pietschmann MF, Niethammer TR, Horng A. et al. The incidence and clinical relevance of graft hypertrophy after matrix-based autologous chondrocyte implantation. Am J Sports Med 2012; 40: 68-74
  • 55 Zhang C, Cai YZ, Lin XJ. Autologous chondrocyte implantation: Is it likely to become a saviour of large-sized and full-thickness cartilage defect in young adult knee?. Knee Surg Sports Traumatol Arthrosc 2016; 24: 1643-1650
  • 56 Mancini D, Fontana A. Five-year results of arthroscopic techniques for the treatment of acetabular chondral lesions in femoroacetabular impingement. Int Orthop 2014; 38: 2057-2064
  • 57 Biant LC, Simons M, Gillespie T. et al. Cell viability in arthroscopic versus open autologous chondrocyte implantation. Am J Sports Med 2017; 45: 77-81
  • 58 Pietschmann MF, Horng A, Niethammer T. et al. Cell quality affects clinical outcome after MACI procedure for cartilage injury of the knee. Knee Surg Sports Traumatol Arthrosc 2009; 17: 1305-1311
  • 59 Fickert S, Schattenberg T, Niks M. et al. Feasibility of arthroscopic 3-dimensional, purely autologous chondrocyte transplantation for chondral defects of the hip: a case series. Arch Orthop Trauma Surg 2014; 134: 971-978
  • 60 Medved F, Gonser P, Lotter O. et al. Severe posttraumatic radiocarpal cartilage damage: first report of autologous chondrocyte implantation. Arch Orthop Trauma Surg 2013; 133: 1469-1475
  • 61 Bentley G, Biant LC, Vijayan S. et al. Minimum ten-year results of a prospective randomised study of autologous chondrocyte implantation versus mosaicplasty for symptomatic articular cartilage lesions of the knee. J Bone Joint Surg Br 2012; 94: 504-509
  • 62 Wylie JD, Hartley MK, Kapron AL. et al. What is the effect of matrices on cartilage repair? A systematic review. Clin Orthop Relat Res 2015; 473: 1673-1682
  • 63 Perdisa F, Filardo G, De Caro F. et al. Matrix-assisted autologous chondrocyte transplantation versus mosaicplasty: a long-term comparison. Abstracts of the 13th World Congress of the International Cartilage Repair Society. Naples, Italy, 24 – 27 September, 2016.
  • 64 Riboh JC, Cvetanovich GL, Cole BJ. et al. Comparative efficacy of cartilage repair procedures in the knee: a network meta-analysis. Knee Surg Sports Traumatol Arthrosc 07.09.2016; [Epub ahead of print] DOI: 10.1007/s00167-016-4300-1.
  • 65 Ogura T, Bryant T, Minas T. Long-term outcomes of autologous chondrocyte implantation in adolescent patients. Am J Sports Med 2017; 45: 1066-1074
  • 66 Devitt BM, Bell SW, Webster KE. et al. Surgical treatments of cartilage defects of the knee: systematic review of randomised controlled trials. Knee 2017; 24: 508-517
  • 67 Welch T, Mandelbaum B, Tom M. Autologous chondrocyte implantation: past, present, and future. Sports Med Arthrosc 2016; 24: 85-91
  • 68 Fontana A, Bistolfi A, Crova M. et al. Arthroscopic treatment of hip chondral defects: autologous chondrocyte transplantation versus simple debridement – a pilot study. Arthroscopy 2012; 28: 322-329
  • 69 Körsmeier K, Claßen T, Kamminga M. et al. Arthroscopic three-dimensional autologous chondrocyte transplantation using spheroids for the treatment of full-thickness cartilage defects of the hip joint. Knee Surg Sports Traumatol Arthrosc 2016; 24: 2032-2037
  • 70 Schroeder JH, Hufeland M, Schütz M. et al. Injectable autologous chondrocyte transplantation for full thickness acetabular cartilage defects: early clinical results. Arch Orthop Trauma Surg 2016; 136: 1445-1451
  • 71 Guenther KP, Landgraeber S, Fickert S. et al. Observational study with Novocart Inject in the reconstruction of hip joint with full thickness cartilage defects (HIP ACTION). Im Internet: https://clinicaltrials.gov/ct2/show/NCT02179346?term=NCT02179346 Stand: 27.06.2014
  • 72 Landgraeber S, Körsmeier K, Lazik-Palm A. et al. Arthroskopische Behandlung von lokalisierten Knorpelschäden an der Hüfte mittels autologer Knorpelzelltransplantation vs. Mikrofrakturierung. Deutscher Kongress für Orthopädie und Unfallchirurgie (DGOU), 25.–28. Oktober 2016, Berlin.
  • 73 Crawford DC, DeBerardino TM, Williams 3rd RJ. NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions: an FDA phase-II prospective, randomized clinical trial after two years. J Bone Joint Surg Am 2012; 94: 979-989
  • 74 Brown WE, Potter HG, Marx RG. et al. Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res 2004; 422: 214-223
  • 75 Bert JM. Abandoning microfracture of the knee: has the time come?. Arthroscopy 2015; 31: 501-505
  • 76 Mithoefer K, Venugopal V, Manaqibwala M. Incidence, degree, and clinical effect of subchondral bone overgrowth after microfracture in the knee. Am J Sports Med 2016; 44: 2057-2063
  • 77 Beck A, Murphy DJ, Carey-Smith R. et al. Treatment of articular cartilage defects with microfracture and autologous matrix-induced chondrogenesis leads to extensive subchondral bone cyst formation in a sheep model. Am J Sports Med 2016; 44: 2629-2643
  • 78 Dhollander A, Moens K, Van der Maas J. et al. Treatment of patellofemoral cartilage defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Acta Orthop Belg 2014; 80: 251-259
  • 79 Somoza RA, Welter JF, Correa D. et al. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev 2014; 20: 596-608
  • 80 Li S, Sengers BG, Oreffo RO. et al. Chondrogenic potential of human articular chondrocytes and skeletal stem cells: a comparative study. J Biomater Appl 2015; 29: 824-836
  • 81 Garcia J, Mennan C, McCarthy HS. et al. Chondrogenic potency analyses of donor-matched chondrocytes and mesenchymal stem cells derived from bone marrow, infrapatellar fat pad, and subcutaneous fat. Stem Cells Int 2016; 2016: 6969726
  • 82 Oda T, Sakai T, Hiraiwa H. et al. Osteoarthritis-derived chondrocytes are a potential source of multipotent progenitor cells for cartilage tissue engineering. Biochem Biophys Res Commun 2016; 479: 469-475
  • 83 DiBartola AC, Everhart JS, Magnussen RA. et al. Correlation between histological outcome and surgical cartilage repair technique in the knee: a meta-analysis. Knee 2016; 23: 344-349
  • 84 Desando G, Bartolotti I, Vannini F. et al. Repair potential of matrix-induced bone marrow aspirate concentrate and matrix-induced autologous chondrocyte implantation for talar osteochondral repair: patterns of some catabolic, inflammatory, and pain mediators. Cartilage 2017; 8: 50-60
  • 85 Nehrer S, Spector M, Minas T. Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res 1999; 365: 149-162
  • 86 Henderson I, Lavigne P, Valenzuela H. et al. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs. Clin Orthop Relat Res 2007; 455: 253-261
  • 87 LaPrade RF, Bursch LS, Olson EJ. et al. Histologic and immunohistochemical characteristics of failed articular cartilage resurfacing procedures for osteochondritis of the knee: a case series. Am J Sports Med 2008; 36: 360-368
  • 88 Brun P, Dickinson SC, Zavan B. et al. Characteristics of repair tissue in second-look and third-look biopsies from patients treated with engineered cartilage: relationship to symptomatology and time after implantation. Arthritis Res Ther 2008; 10: R132
  • 89 Kaul G, Cucchiarini M, Remberger K. et al. Failed cartilage repair for early osteoarthritis defects: a biochemical, histological and immunohistochemical analysis of the repair tissue after treatment with marrow-stimulation techniques. Knee Surg Sports Traumatol Arthrosc 2012; 20: 2315-2324
  • 90 Olivos Meza A, Arredondo-Valdés R, Cortes S. et al. Matrix encapsulated chondrocyte implantation versus microfracture technique: Five years follow-up with T2-mapping-MRI. Abstracts of the 13th World Congress of the International Cartilage Repair Society. Naples, Italy, 24 – 27 September, 2016.
  • 91 Gikas PD, Morris T, Carrington R. et al. A correlation between the timing of biopsy after autologous chondrocyte implantation and the histological appearance. J Bone Joint Surg Br 2009; 91: 1172-1177
  • 92 Vasiliadis HS, Danielson B, Ljungberg M. et al. Autologous chondrocyte implantation in cartilage lesions of the knee: long-term evaluation with magnetic resonance imaging and delayed gadolinium-enhanced magnetic resonance imaging technique. Am J Sports Med 2010; 38: 943-949
  • 93 Demange MK, Minas T, von Keudell A. et al. Intralesional osteophyte regrowth following autologous chondrocyte implantation after previous treatment with marrow stimulation technique. Cartilage 2017; 8: 131-138
  • 94 Mistry H, Connock M, Pink J. et al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technol Assess 2017; 21: 1-294
  • 95 Frehner F, Benthien JP. Microfracture: State of the art in cartilage surgery?. Cartilage 2017; 1947603517700956 doi:10.1177/1947603517700956 [Epub ahead of print]
  • 96 Røtterud JH, Sivertsen EA, Forssblad M. et al. Effect on patient-reported outcomes of debridement or microfracture of concomitant full-thickness cartilage lesions in anterior cruciate ligament-reconstructed knees: a nationwide cohort study from Norway and Sweden of 357 patients with 2-year follow-up. Am J Sports Med 2016; 44: 337-344
  • 97 Lubowitz JH. Editorial commentary: microfracture for focal cartilage defects: is the hip like the knee?. Arthroscopy 2016; 32: 201-202
  • 98 Feldman MD. Editorial commentary: “all that glitters is not gold”. Arthroscopy 2016; 32: 348-349
  • 99 Hufeland M, Krüger D, Haas NP. et al. Arthroscopic treatment of femoroacetabular impingement shows persistent clinical improvement in the mid-term. Arch Orthop Trauma Surg 2016; 136: 687-691
  • 100 Wainwright C, Theis JC, Garneti N. et al. Age at hip or knee joint replacement surgery predicts likelihood of revision surgery. J Bone Joint Surg Br 2011; 93: 1411-1415
  • 101 Hoemann C, Kandel R, Roberts S. et al. International Cartilage Repair Society (ICRS) recommended guidelines for histological endpoints for cartilage repair studies in animal models and clinical trials. Cartilage 2011; 2: 153-172
  • 102 Filardo G, Andriolo L, Sessa A. et al. Age is not a contraindication for cartilage surgery: a critical analysis of standardized outcomes at long-term follow-up. Am J Sports Med 2017; 45: 1822-1828