Z Gastroenterol 2018; 56(01): 36-42
DOI: 10.1055/s-0043-123829
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Discordance in steatosis classification between liver biopsy and transient elastography for high controlled attenuation parameter (CAP) values

Diskrepanzen bei der Quantifizierung der Steatosis hepatis zwischen transienter Elastografie und Leberbiopsie bei hohen CAP-Werten
Johanna Galaski
,
Lisa Schulz
,
Jenny Krause
,
Ansgar W. Lohse
Further Information

Publication History

31 August 2017

22 November 2017

Publication Date:
09 January 2018 (online)

Abstract

Objective The controlled attenuation parameter (CAP) measured by transient elastography allows for the noninvasive assessment of hepatic steatosis. However, discrepant results between CAP values and histological evaluation have been reported in particular with high CAP values. We therefore investigated the diagnostic validity of high CAP measurements.

Methods Forty patients with liver disease and CAP measurements > 300 dB/m that underwent ultrasound-guided or minilaparoscopic liver biopsy were retrospectively enrolled. CAP values were compared with the respective histological and macroscopic evaluation and correlated with clinical parameters.

Results CAP values > 300 dB/m had an 87.5 % specificity for detection of hepatic steatosis but failed to discriminate between steatosis grade S1 – S3. Discordant results, defined as a discrepancy of at least 2 steatosis grades between transient elastography and liver biopsy, were observed in 40 % of cases. The interquartile range (IQR) of CAP was confirmed as a predictor of discrepant findings. Macroscopic evaluation as part of minilaparoscopy detected hepatic steatosis in 74 % of patients with histological grade S2 – S3 in contrast to only 10 % classified as histological grade S0 – S1.

Conclusion High CAP measurements need to be interpreted with care and with regard to clinical parameters, in particular when high IQR values are registered.

Zusammenfassung

Ziel Der durch transiente Elastografie gemessene Controlled Attenuation Parameter (CAP) ermöglicht die nicht-invasive Beurteilung der Steatosis hepatis. Insbesondere im Falle hoher CAP-Werte wurden jedoch abweichende Ergebnisse zwischen CAP-Werten und histologischer Untersuchung berichtet. Ziel dieser Studie ist es, die diagnostische Gültigkeit hoher CAP-Messungen zu untersuchen.

Methoden 40 Patienten mit Lebererkrankung und CAP-Messungen > 300 dB/m sowie sonografisch gesteuerter oder minilaparoskopischer Leberbiopsie wurden retrospektiv eingeschlossen. Die CAP-Werte wurden mit den jeweiligen histologischen und makroskopischen Beurteilungen verglichen sowie mit klinischen Parametern korreliert.

Ergebnisse CAP-Werte > 300 dB/m wiesen eine Spezifität von 87,5 % für den Nachweis einer Steatosis hepatis auf, konnten jedoch zwischen den Steatosegraden S1 – S3 nicht unterscheiden. Diskordante Ergebnisse, definiert als eine Diskrepanz von mindestens zwei Steatosegraden zwischen transienter Elastografie und Leberbiopsie, wurden in 40 % der Fälle beobachtet. Der Interquartilsabstand der CAP-Messung wurde als Prädiktor für diskrepante Befunde bestätigt. Die makroskopische Beurteilung im Rahmen einer Minilaparoskopie lieferte in 74 % der Patienten mit histologischer Steatosis S2 – S3 vs. 10 % der Patienten mit histologischer Steatosis S0 – S1 Hinweise auf eine vorliegende Steatosis hepatis.

Schlussfolgerung Hohe CAP-Messungen müssen insbesondere im Falle ebenfalls erhöhter IQR-Werte sorgfältig und in Zusammenschau mit den klinischen Parametern bewertet werden.

 
  • References

  • 1 Hwang SJ, Luo JC, Chu CW. et al. Hepatic steatosis in chronic hepatitis C virus infection: prevalence and clinical correlation. J Gastroenterol Hepatol 2001; 16: 190-195
  • 2 Younossi ZM, Blissett D, Blissett R. et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 2016; 64: 1577-1586
  • 3 Younossi ZM, Koenig AB, Abdelatif D. et al. Global epidemiology of nonalcoholic fatty liver disease – meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64: 73-84
  • 4 Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002; 346: 1221-1231
  • 5 Baffy G, Brunt EM, Caldwell SH. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J Hepatol 2012; 56: 1384-1391
  • 6 Raptis DA, Fischer MA, Graf R. et al. MRI: the new reference standard in quantifying hepatic steatosis?. Gut 2012; 61: 117-127
  • 7 Imajo K, Kessoku T, Honda Y. et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology 2016; 150: 626-637
  • 8 Sasso M, Beaugrand M, de Ledinghen V. et al. Controlled attenuation parameter (CAP): a novel VCTE guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med Biol 2010; 36: 1825-1835
  • 9 Karlas T, Petroff D, Sasso M. et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol 2017; 66: 1022-1030
  • 10 Shen F, Zheng RD, Mi YQ. et al. Controlled attenuation parameter for non-invasive assessment of hepatic steatosis in Chinese patients. World J Gastroenterol 2014; 20: 4702-4711
  • 11 Jung KS, Kim BK, Kim SU. et al. Factors affecting the accuracy of controlled attenuation parameter (CAP) in assessing hepatic steatosis in patients with chronic liver disease. PloS One 2014; 9: e98689
  • 12 European Association for the Study of the Liver. EASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol 2015; 63: 237-264
  • 13 Sandrin L, Fourquet B, Hasquenoph JM. et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003; 29: 1705-1713
  • 14 Helmreich-Becker I, Meyer zumBuschenfelde KH, Lohse AW. Safety and feasibility of a new minimally invasive diagnostic laparoscopy technique. Endoscopy 1998; 30: 756-762
  • 15 Helmreich-Becker I, Schirmacher P, Denzer U. et al. Minilaparoscopy in the diagnosis of cirrhosis: superiority in patients with Child-Pugh A and macronodular disease. Endoscopy 2003; 35: 55-60
  • 16 The French METAVIR Cooperative Study Group. Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. Hepatology 1994; 20: 15-20
  • 17 Kleiner DE, Brunt EM, Van Natta M. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41: 1313-1321
  • 18 Myers RP, Crotty P, Pomier-Layrargues G. et al. Prevalence, risk factors and causes of discordance in fibrosis staging by transient elastography and liver biopsy. Liver Int 2010; 30: 1471-1480
  • 19 Lucidarme D, Foucher J, Le BailB. et al. Factors of accuracy of transient elastography (FibroScan) for the diagnosis of liver fibrosis in chronic hepatitis C. Hepatology 2009; 49: 1083-1089
  • 20 Kim SU, Seo YS, Cheong JY. et al. Factors that affect the diagnostic accuracy of liver fibrosis measurement by FibroScan in patients with chronic hepatitis B. Aliment Pharmacol Ther 2010; 32: 498-505
  • 21 Myers RP, Pollett A, Kirsch R. et al. Controlled Attenuation Parameter (CAP): a noninvasive method for the detection of hepatic steatosis based on transient elastography. Liver Int 2012; 32: 902-910
  • 22 de Ledinghen V, Vergniol J, Foucher J. et al. Non-invasive diagnosis of liver steatosis using controlled attenuation parameter (CAP) and transient elastography. Liver Int 2012; 32: 911-918
  • 23 Wong VW, Petta S, Hiriart JB. et al. Validity criteria for the diagnosis of fatty liver by M probe-based controlled attenuation parameter. J Hepatol 2017; 67: 577-584
  • 24 de Ledinghen V, Vergniol J, Capdepont M. et al. Controlled attenuation parameter (CAP) for the diagnosis of steatosis: a prospective study of 5323 examinations. J Hepatol 2014; 60: 1026-1031
  • 25 Myers RP, Pomier-Layrargues G, Kirsch R. et al. Feasibility and diagnostic performance of the FibroScan XL probe for liver stiffness measurement in overweight and obese patients. Hepatology 2012; 55: 199-208
  • 26 Boursier J, Zarski JP, de Ledinghen V. et al. Determination of reliability criteria for liver stiffness evaluation by transient elastography. Hepatology 2013; 57: 1182-1191
  • 27 Hartl J, Denzer U, Ehlken H. et al. Transient elastography in autoimmune hepatitis: timing determines the impact of inflammation and fibrosis. J Hepatol 2016; 65: 769-775
  • 28 Dolce CJ, Russo M, Keller JE. et al. Does liver appearance predict histopathologic findings: prospective analysis of routine liver biopsies during bariatric surgery. Surg Obes Relat Dis 2009; 5: 323-328
  • 29 Petrick A, Benotti P, Wood GC. et al. Utility of ultrasound, transaminases, and visual inspection to assess nonalcoholic fatty liver disease in bariatric surgery patients. Obes Surg 2015; 25: 2368-2375
  • 30 Ratziu V, Charlotte F, Heurtier A. et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 2005; 128: 1898-1906
  • 31 Kim SU, Kim JK, Park YN. et al. Discordance between liver biopsy and FibroScan® in assessing liver fibrosis in chronic hepatitis b: risk factors and influence of necroinflammation. PLoS One 2012; 7: e32233
  • 32 Park MS, Kim BK, Cheong JY. et al. Discordance between liver biopsy and FibroTest in assessing liver fibrosis in chronic hepatitis B. PLoS One 2013; 8: e55759
  • 33 Chan WK, Nik MustaphaNR, Wong GL. et al. Controlled attenuation parameter using the FibroScan® XL probe for quantification of hepatic steatosis for non-alcoholic fatty liver disease in an Asian population. United European Gastroenterol J 2017; 5: 76-85