Synlett
DOI: 10.1055/s-0043-1763759
letter

AgSCF3 Radical Addition Based on an Oxidant-Free α,β-Amide (Trifluoromethyl)sulfanylation Reaction

Zhi-Bo Li
,
Jin Zhang
,
Yi-Ran Shi
,
Hong Li
,
Min-Ge Yang
,
Wen-Qing Zhu
,
Qiang-Wei Fan
,
Yang Li
We are grateful for the financial support from the National Natural Science Foundation of China (GZ-1645), the Key Research & Development Project in Shaanxi Province (2022GY-195, 2023-YBGY-183), the Basic Research Project of Natural Science of Shaanxi Province (2021JLM-30), and Shaanxi Provincial Department of Education Science and Technology Project (23JY028).


Abstract

(Trifluoromethyl)sulfanylamides are an important class of organic compounds that are common among natural products and drug molecules. Here, we report a (trifluoromethyl)sulfanylation reaction using silver(I) (trifluoromethyl)sulfide as a free-radical (trifluoromethyl)sulfanylation reagent for β-amide compounds. This reaction does not require stoichiometric oxidants or additional transition-metal catalysts, and can be achieved by adding common organic acids. This method has excellent applicability and can accommodate several functional groups, including ester groups, acyl groups, and even bromo or iodo groups. Heterocyclic α,β-amides can also be readily converted into the corresponding products. This reaction also provides a new method for the synthesis of deuterated (trifluoromethyl)sulfanylamides.

Supporting Information



Publication History

Received: 06 March 2024

Accepted after revision: 17 December 2023

Article published online:
18 April 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley-VCH; Weinheim: 2004
    • 1b Mikami K, Itoh Y, Yamanaka M. Chem. Rev. 2004; 104: 1
    • 1c Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2005; 44: 214
    • 1d Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
    • 1e Bégué JP, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley; Hoboken: 2008. 41, 353
    • 1f Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 1g Fluorine in Medicinal Chemistry and Chemical Biology. Ojima I. Wiley-Blackwell; Chichester: 2009
    • 1h Salwiczek M, Nyakatura EK, Gerling UI. M, Ye S, Koksch B. Chem. Soc. Rev. 2012; 41: 2135
    • 1i Han W.-Y, Wang J.-S, Zhao J, Long L, Cui B.-D, Wan N.-W, Chen Y.-Z. J. Org. Chem. 2018; 83: 6556
    • 1j Zhao W.-W, Shao Y.-C, Wang A.-N, Huang J.-L, He C.-Y, Cui BD, Wan N.-W, Chen Y.-Z, Han W.-Y. Org. Lett. 2021; 23: 9256
    • 2a Leroux F, Jeschke P, Schlosser M. Chem. Rev. 2005; 105: 827
    • 2b Manteau B, Pazenok S, Vors J.-P, Leroux F.-R. J. Fluorine Chem. 2010; 131: 140
    • 2c Huang Y, He X, Lin X, Rong M, Weng Z. Org. Lett. 2014; 16: 3284
    • 3a Chen C, Xie Y, Chu L.-L, Wang R.-W, Zhang X.-G, Qing F.-L. Angew. Chem. Int. Ed. 2012; 51: 2492
    • 3b Tlili A, Billard T. Angew. Chem. Int. Ed. 2013; 52: 6818
    • 3c Chu L, Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
    • 3d Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
    • 3e Xu X.-H, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
    • 4a Teverovskiy G, Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 7312
    • 4b Zhang C.-P, Vicic DA. J. Am. Chem. Soc. 2012; 134: 183
    • 4c Chen C, Chu L, Qing F.-L. J. Am. Chem. Soc. 2012; 134: 12454
    • 4d Weng Z, He W, Chen C, Lee R, Tan D, Lai Z, Kong D, Yuan Y, Huang K.-W. Angew. Chem. Int. Ed. 2013; 52: 1548
    • 4e Wang K.-P, Yun SY, Mamidipalli P, Lee D. Chem. Sci. 2013; 4: 3205
    • 4f Danoun G, Bayarmagnai B, Gruenberg MF, Goossen LJ. Chem. Sci. 2014; 5: 1312
    • 4g Tran LD, Popov I, Daugulis O. J. Am. Chem. Soc. 2012; 134: 18237
    • 4h Chen C, Xu X.-H, Yang B, Qing F.-L. Org. Lett. 2014; 16: 3372
    • 4i Xu C, Shen Q. Org. Lett. 2014; 16: 2046
    • 4j Hu M, Rong J, Miao W, Ni C, Han Y, Hu J. Org. Lett. 2014; 16: 2030
    • 4k Shao X, Wang X, Yang T, Lu L, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 3457
    • 4l Yang Y.-D, Azuma A, Tokunaga E, Yamasaki M, Shiro M, Shitaba N. J. Am. Chem. Soc. 2013; 135: 8782
    • 4m Xu C, Ma B, Shen Q. Angew. Chem. Int. Ed. 2014; 53: 9316
    • 5a Toulgoat F, Alazet S, Billard T. Eur. J. Org. Chem. 2014; 12: 2415
    • 5b Shao X.-X, Xu C.-F, Lu L, Shen Q.-L. Acc. Chem. Res. 2015; 48: 1227
    • 5c Hu F, Shao X.-X, Zhu D.-H, Lu L, Shen Q.-L. Angew. Chem. Int. Ed. 2014; 53: 6105
    • 5d Yang Y, Jiang X, Qing F. J. Org. Chem. 2012; 77: 7538
    • 5e Xiao Q, Sheng J, Chen Z, Wu J. Chem. Commun. 2013; 49: 8647
    • 5f Sheng J, Fan C, Wu J. Chem. Commun. 2014; 50: 5494
    • 5g Sheng J, Li S, Wu J. Chem. Commun. 2014; 50: 578
    • 5h Xiao Q, Zhu H, Li G, Chen Z. Adv. Synth. Catal. 2014; 356: 3809
    • 5i Barata-Vallejo S, Bonesi S, Postigo A. Org. Biomol. Chem. 2016; 14: 7150
    • 5j Sung D.-B, Han JH, Kim Y.-K, Mun BH, Park S, Kim HS, Lee JS. J. Org. Chem. 2022; 87: 4936
    • 5k Ryabukhin DS, Gurskaya LY, Fukin GK, Vasilyev AV. Tetrahedron 2014; 70: 6428
    • 6a Qiu Y.-F, Zhu X.-Y, Li Y.-X, He Y.-T, Yang F, Wang J, Hua H.-L, Zheng L, Wang L.-C, Liu X.-Y, Liang Y.-M. Org. Lett. 2015; 17: 3694
    • 6b Jin D.-P, Gao P, Chen D.-Q, Chen S, Wang J, Liu X.-Y, Liang Y.-M. Org. Lett. 2016; 18: 3486
    • 7a Yin F, Wang X.-S. Org. Lett. 2014; 16: 1128
    • 7b Zhu L, Wang G, Guo Q, Xu Z, Zhang D, Wang R. Org. Lett. 2014; 16: 5390
    • 7c Zhang K, Liu J.-B, Qing F.-L. Chem. Commun. 2014; 50: 14157
    • 7d Li C, Zhang K, Xu X.-H, Qing F.-L. Tetrahedron Lett. 2015; 56: 6273
    • 7e Fuentes N, Kong W, Fernández-Sánchez L, Merino E, Nevado C. J. Am. Chem. Soc. 2015; 137: 964
    • 8a Huang F.-Q, Wang Y.-W, Sun J.-G, Xie J, Qi L.-W, Zhang B. RSC Adv. 2016; 6: 52710
    • 8b Guo S, Zhang X, Tang P. Angew. Chem. Int. Ed. 2015; 54: 4065
    • 8c Wu H, Xiao Z, Wu J, Guo Y, Xiao J, Liu C, Chen Q.-Y. Angew. Chem. Int. Ed. 2015; 54: 4070
  • 9 Jereb M, Gosak K. Org. Biomol. Chem. 2015; 13: 3103
  • 10 Horvat M, Kodrič G, Jereb M, Iskra J. RSC Adv. 2020; 10: 34534
  • 11 Yoshida M, Kawai K, Tanka R, Yoshino T, Matsunaga S. Chem. Commun. 2017; 53: 5974
  • 12 Chiu W, Nadeau BE, Patrick BO, Love JA. Dalton Trans. 2023; 52: 3738
  • 13 Danoun G, Bayamagnai B, Gruenberg MF, Goossen L. Dalton Trans. 2014; 5: 1312
  • 14 Wu W, Wang B, Ji X, Cao S. Org. Chem. Front. 2017; 4: 1299
  • 15 Teverovskiy G, Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 7312
  • 16 Ji M, Yu J, Zhu C. Chem. Commun. 2018; 54: 6812
  • 17 Chen X, Pei C, Liu B, Li J, Zou D, Wu Y. Chem. Commun. 2022; 58: 8674
  • 18 Jiang H, Zhu R, Zhu C, Chen F, Wu W. Org. Biomol. Chem. 2018; 16: 1646
  • 19 Zhang B.-S, Gao L.-Y, Zhang Z, Wen Y.-H, Liang Y.-M. Chem. Commun. 2018; 54: 1185
  • 20 Liang Y, Wang S, Jia H, Chen B, Zhu F, Huo Z. New J. Chem. 2022; 46: 12077
  • 21 Zeng Y.-F, Tan D.-H, Chen Y, lv W.-X, Liu X.-G, Li Q, Wang H. Org. Chem. Front. 2015; 2: 1511
  • 22 Li H, Liu S, Huang Y, Xu X.-H, Qing F.-Q. Chem. Commun. 2017; 53: 10136
  • 23 Qiu Y.-F, Niu Y.-J, Wei X, Cao B.-Q, Wang X.-C, Quan Z.-J. J. Org. Chem. 2019; 84: 4165
  • 24 Shi H, Wang X, Li X, Zhang B, Li X, Zhang J, Yang J, Du Y. Org. Lett. 2022; 24: 2214
    • 25a Li Y.-m, Fu J.-f, He L.-q, Li W-n, Esmail V. RSC Adv. 2021; 11: 24474
    • 25b Jin MY, Li J, Huang R, Zhou Y, Chung LW, Wang J. Chem. Commun. 2018; 54: 4581
    • 25c Zhu M, Fu W, Guo W, Tian Y, Wang Z, Ji B. Org. Biomol. Chem. 2019; 17: 3374
    • 25d Saravanan P, Anbarasan P. Chem. Commun. 2019; 55: 4639
    • 25e Liu K, Jin Q, Chen S, Liu PN. RSC Adv. 2017; 7: 1546
    • 25f Yadav A.-K, Singh K.-N. Chem. Commun. 2018; 54: 1976
    • 25g Yoo J, Ha H.-J, Kim B, Cho C.-W. J. Org. Chem. 2020; 85: 7077
  • 26 Luo Z, Yang X, Tsui GC. Org. Lett. 2020; 22: 6155
  • 27 He J, Chen C, Fu GC, Peters JC. ACS Catal. 2018; 8: 11741
  • 28 Xiao Z, Liu Y, Zheng L, Liu C, Guo Y, Chen Q. J. Org. Chem. 2018; 83: 5836
  • 29 Zhang Z, Fang X, Aili A, Wang S, Tang J, Lin W, Xie L, Chen J, Sun K. Org. Lett. 2023; 25: 4598
  • 30 Huang Y.-H, Wang S.-R, Wu D.-P, Huang P.-Q. Org. Lett. 2019; 21: 1681
  • 31 N-Aryl-3-[(trifluoromethyl)sulfanyl]propanamides (3a–al); General Procedure A 35.0 mL glass reaction tube was charged with the appropriate acrylamide 1 (1.0 mmol), AgSCF3 (2.0 mmol) TsOH·H2O (2.0 mmol), and MeCN (4.0 mL). The tube was then placed in an autoclave that was sealed, purged three times with N2, and heated in an oil bath at 40 °C for 8 h. The autoclave was then cooled to r.t. and the crude product was purified by column chromatography (silica gel, PE–EtOAc). N-(4-Methoxyphenyl)-3-[(trifluoromethyl)sulfanyl]propenamide (3a) Prepared according to the general procedure, and purified by column chromatography [silica gel, PE–EtOAc (10:1 to 6:1)] to give a white solid; yield: 145.1 mg (52%). 1H NMR (400 MHz, CDCl3): δ = 7.78 (s, 1 H), 7.34 (d, J = 8.8 Hz, 2 H), 6.81 (d, J = 8.8 Hz, 2 H), 3.76 (s, 3 H), 3.18 (t, J = 6.8 Hz, 2 H), 2.70 (t, J = 6.8 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 168.6, 156.7, 131.1 (q, J = 304.4 Hz), 130.4, 122.5, 114.1, 55.4, 36.9, 25.3. 19F NMR (376 MHz, CDCl3): δ = –41.23 (s, 3 F). HRMS (ESI): m/z [M + Na]+ calcd for C11H12F3NNaO2S: 302.0435; found: 302.0433.