Semin Musculoskelet Radiol 2023; 27(03): 269-282
DOI: 10.1055/s-0043-1766110
Review Article

Osteochondral Lesions of the Ankle and Foot

Logan P. Haug
1   Department of Radiology, Mayo Clinic, Phoenix, Arizona
,
Andrew P. Sill
1   Department of Radiology, Mayo Clinic, Phoenix, Arizona
,
Roman Shrestha
1   Department of Radiology, Mayo Clinic, Phoenix, Arizona
,
Karan A. Patel
2   Department of Orthopedics, Mayo Clinic, Phoenix, Arizona
,
Todd A. Kile
2   Department of Orthopedics, Mayo Clinic, Phoenix, Arizona
,
Michael G. Fox
1   Department of Radiology, Mayo Clinic, Phoenix, Arizona
› Author Affiliations

Abstract

Osteochondral lesions (OCLs) in the ankle are more common than OCLs of the foot, but both share a similar imaging appearance. Knowledge of the various imaging modalities, as well as available surgical techniques, is important for radiologists. We discuss radiographs, ultrasonography, computed tomography, single-photon emission computed tomography/computed tomography, and magnetic resonance imaging to evaluate OCLs. In addition, various surgical techniques used to treat OCLs—debridement, retrograde drilling, microfracture, micronized cartilage-augmented microfracture, autografts, and allografts—are described with an emphasis on postoperative appearance following these techniques.

Supplementary Material



Publication History

Article published online:
25 May 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Batista JP, Duarte-Pereira HM, van Dijk CN, Del Vecchio JJ. Posterior arthroscopic treatment of ankle osteochondral lesions: technical note. J ISAKOS Joint Disord Orthop Sports Med 2020; 5 (02) 104
  • 2 Saxena A, Eakin C. Articular talar injuries in athletes: results of microfracture and autogenous bone graft. Am J Sports Med 2007; 35 (10) 1680-1687
  • 3 Martijn HA, Lambers KTA, Dahmen J, Stufkens SAS, Kerkhoffs GMMJ. High incidence of (osteo)chondral lesions in ankle fractures. Knee Surg Sports Traumatol Arthrosc 2021; 29 (05) 1523-1534
  • 4 Frenkel SR, Di Cesare PE. Degradation and repair of articular cartilage. Front Biosci 1999; 4: D671-D685
  • 5 Elias I, Zoga AC, Morrison WB, Besser MP, Schweitzer ME, Raikin SM. Osteochondral lesions of the talus: localization and morphologic data from 424 patients using a novel anatomical grid scheme. Foot Ankle Int 2007; 28 (02) 154-161
  • 6 Hembree WC, Wittstein JR, Vinson EN. et al. Magnetic resonance imaging features of osteochondral lesions of the talus. Foot Ankle Int 2012; 33 (07) 591-597
  • 7 Wodicka R, Ferkel E, Ferkel R. Osteochondral lesions of the ankle. Foot Ankle Int 2016; 37 (09) 1023-1034
  • 8 Jagtenberg EM, Kalmet PHS, de Krom MAP, Hermus JPS, Seelen HAM, Poeze M. Effectiveness of surgical treatments on healing of cartilage and function level in patients with osteochondral lesions of the tibial plafond: a systematic review. J Orthop 2021; 27: 34-40
  • 9 van Bergen CJ, Gerards RM, Opdam KT, Terra MP, Kerkhoffs GM. Diagnosing, planning and evaluating osteochondral ankle defects with imaging modalities. World J Orthop 2015; 6 (11) 944-953
  • 10 Thompson JP, Loomer RL. Osteochondral lesions of the talus in a sports medicine clinic. A new radiographic technique and surgical approach. Am J Sports Med 1984; 12 (06) 460-463
  • 11 Verhagen RA, Maas M, Dijkgraaf MG, Tol JL, Krips R, van Dijk CN. Prospective study on diagnostic strategies in osteochondral lesions of the talus. Is MRI superior to helical CT?. J Bone Joint Surg Br 2005; 87 (01) 41-46
  • 12 Berndt AL, Harty M. Osteochondritis dissecans of the ankle joint; report of a case simulating a fracture of the talus. J Bone Joint Surg Am 1959; 41-A (04) 988-1020
  • 13 Pritsch M, Horoshovski H, Farine I. Arthroscopic treatment of osteochondral lesions of the talus. J Bone Joint Surg Am 1986; 68 (06) 862-865
  • 14 Kok AC, Terra MP, Muller S. et al. Feasibility of ultrasound imaging of osteochondral defects in the ankle: a clinical pilot study. Ultrasound Med Biol 2014; 40 (10) 2530-2536
  • 15 Tuijthof GJM, Kok AC, Terra MP. et al. Sensitivity and specificity of ultrasound in detecting (osteo)chondral defects: a cadaveric study. Ultrasound Med Biol 2013; 39 (08) 1368-1375
  • 16 Boudahmane S, Dubreuil T, Pesquer L. et al. Assessment of osteochondral lesions of the talus with ultrasonography a prospective study with computed tomography arthrography as the gold standard. SN Compr Clin Med 2020; 2: 504-510
  • 17 Leumann A, Valderrabano V, Plaass C. et al. A novel imaging method for osteochondral lesions of the talus—comparison of SPECT-CT with MRI. Am J Sports Med 2011; 39 (05) 1095-1101
  • 18 Meftah M, Katchis SD, Scharf SC, Mintz DN, Klein DA, Weiner LS. SPECT/CT in the management of osteochondral lesions of the talus. Foot Ankle Int 2011; 32 (03) 233-238
  • 19 van Bergen CJA, Baur OL, Murawski CD. et al; International Consensus Group on Cartilage Repair of the Ankle. Diagnosis: History, physical examination, imaging, and arthroscopy: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle. Foot Ankle Int 2018; 39 (1_suppl, suppl): 3S-8S
  • 20 van Bergen CJ, Tuijthof GJ, Blankevoort L, Maas M, Kerkhoffs GM, van Dijk CN. Computed tomography of the ankle in full plantar flexion: a reliable method for preoperative planning of arthroscopic access to osteochondral defects of the talus. Arthroscopy 2012; 28 (07) 985-992
  • 21 Barr C, Bauer JS, Malfair D. et al. MR imaging of the ankle at 3 Tesla and 1.5 Tesla: protocol optimization and application to cartilage, ligament and tendon pathology in cadaver specimens. Eur Radiol 2007; 17 (06) 1518-1528
  • 22 Guimarães JB, da Cruz IAN, Nery C. et al. Osteochondral lesions of the talar dome: an up-to-date approach to multimodality imaging and surgical techniques. Skeletal Radiol 2021; 50 (11) 2151-2168
  • 23 Griffith JF, Lau DT, Yeung DK, Wong MW. High-resolution MR imaging of talar osteochondral lesions with new classification. Skeletal Radiol 2012; 41 (04) 387-399
  • 24 Schreiner MM, Mlynarik V, Zbýň Š. et al. New technology in imaging cartilage of the ankle. Cartilage 2017; 8 (01) 31-41
  • 25 Sugimoto K, Takakura Y, Tohno Y, Kumai T, Kawate K, Kadono K. Cartilage thickness of the talar dome. Arthroscopy 2005; 21 (04) 401-404
  • 26 Lee RKL, Griffith JF, Law EKC, Ng AWH, Yeung DKW. Ankle traction during MRI of talar dome osteochondral lesions. AJR Am J Roentgenol 2017; 209 (04) 874-882
  • 27 Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br 1961; 43-B: 752-757
  • 28 Posadzy M, Desimpel J, Vanhoenacker F. Staging of osteochondral lesions of the talus: MRI and cone beam CT. J Belg Soc Radiol 2017; 101 (2, Suppl 2): 1
  • 29 Linklater JM. Imaging of talar dome chondral and osteochondral lesions. Top Magn Reson Imaging 2010; 21 (01) 3-13
  • 30 Kendell SD, Helms CA, Rampton JW, Garrett WE, Higgins LD. MRI appearance of chondral delamination injuries of the knee. AJR Am J Roentgenol 2005; 184 (05) 1486-1489
  • 31 Han SH, Lee JW, Lee DY, Kang ES. Radiographic changes and clinical results of osteochondral defects of the talus with and without subchondral cysts. Foot Ankle Int 2006; 27 (12) 1109-1114
  • 32 Hurley ET, Murawski CD, Paul J. et al; International Consensus Group on Cartilage Repair of the Ankle. Osteochondral autograft: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle. Foot Ankle Int 2018; 39 (1_suppl, suppl): 28S-34S
  • 33 Smyth NA, Murawski CD, Adams Jr SB. et al; International Consensus Group on Cartilage Repair of the Ankle. Osteochondral allograft: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle. Foot Ankle Int 2018; 39 (1_suppl, suppl): 35S-40S
  • 34 Nakasa T, Ikuta Y, Ota Y. et al. Relationship of T2 value of high-signal line on MRI to the fragment in osteochondral lesion of the talus. Foot Ankle Int 2020; 41 (06) 698-704
  • 35 Reilingh ML, Murawski CD, DiGiovanni CW. et al; International Consensus Group on Cartilage Repair of the Ankle. Fixation techniques: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle. Foot Ankle Int 2018; 39 (1_suppl, suppl): 23S-27S
  • 36 O'Connor MA, Palaniappan M, Khan N, Bruce CE. Osteochondritis dissecans of the knee in children. A comparison of MRI and arthroscopic findings. J Bone Joint Surg Br 2002; 84 (02) 258-262
  • 37 De Smet AA, Fisher DR, Burnstein MI, Graf BK, Lange RH. Value of MR imaging in staging osteochondral lesions of the talus (osteochondritis dissecans): results in 14 patients. AJR Am J Roentgenol 1990; 154 (03) 555-558
  • 38 Bohndorf K. Osteochondritis (osteochondrosis) dissecans: a review and new MRI classification. Eur Radiol 1998; 8 (01) 103-112
  • 39 De Smet AA, Ilahi OA, Graf BK. Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skeletal Radiol 1996; 25 (02) 159-163
  • 40 Dipaola JD, Nelson DW, Colville MR. Characterizing osteochondral lesions by magnetic resonance imaging. Arthroscopy 1991; 7 (01) 101-104
  • 41 Hepple S, Winson IG, Glew D. Osteochondral lesions of the talus: a revised classification. Foot Ankle Int 1999; 20 (12) 789-793
  • 42 Taranow WS, Bisignani GA, Towers JD, Conti SF. Retrograde drilling of osteochondral lesions of the medial talar dome. Foot Ankle Int 1999; 20 (08) 474-480
  • 43 Schmid MR, Pfirrmann CWA, Hodler J, Vienne P, Zanetti M. Cartilage lesions in the ankle joint: comparison of MR arthrography and CT arthrography. Skeletal Radiol 2003; 32 (05) 259-265
  • 44 Pirimoglu B, Ogul H, Polat G, Kantarci M, Levent A. The comparison of direct magnetic resonance arthrography with volumetric interpolated breath-hold examination sequence and multidetector computed tomography arthrography techniques in detection of talar osteochondral lesions. Acta Orthop Traumatol Turc 2019; 53 (03) 209-214
  • 45 El-Khoury GY, Alliman KJ, Lundberg HJ, Rudert MJ, Brown TD, Saltzman CL. Cartilage thickness in cadaveric ankles: measurement with double-contrast multi-detector row CT arthrography versus MR imaging. Radiology 2004; 233 (03) 768-773
  • 46 Kirschke JS, Braun S, Baum T. et al. Diagnostic value of CT arthrography for evaluation of osteochondral lesions at the ankle. BioMed Res Int 2016; 2016: 3594253
  • 47 Cerezal L, Llopis E, Canga A, Rolón A. MR arthrography of the ankle: indications and technique. Radiol Clin North Am 2008; 46 (06) 973-994 , v
  • 48 Lopes R, Geffroy L, Padiolleau G. et al. Proposal of a new CT arthrographic classification system of osteochondral lesions of the talus. Orthop Traumatol Surg Res 2021; 107 (06) 102890
  • 49 Naran KN, Zoga AC. Osteochondral lesions about the ankle. Radiol Clin North Am 2008; 46 (06) 995-1002 , v
  • 50 You JY, Lee GY, Lee JW, Lee E, Kang HS. An osteochondral lesion of the distal tibia and fibula in patients with an osteochondral lesion of the talus on MRI: prevalence, location, and concomitant ligament and tendon injuries. AJR Am J Roentgenol 2016; 206 (02) 366-372
  • 51 Elias I, Raikin SM, Schweitzer ME, Besser MP, Morrison WB, Zoga AC. Osteochondral lesions of the distal tibial plafond: localization and morphologic characteristics with an anatomical grid. Foot Ankle Int 2009; 30 (06) 524-529
  • 52 Bui-Mansfield LT, Kline M, Chew FS, Rogers LF, Lenchik L. Osteochondritis dissecans of the tibial plafond: imaging characteristics and a review of the literature. AJR Am J Roentgenol 2000; 175 (05) 1305-1308
  • 53 Bui-Mansfield LT, Lenchik L, Rogers LF, Chew FS, Boles CA, Kline M. Osteochondritis dissecans of the tarsal navicular bone: imaging findings in four patients. J Comput Assist Tomogr 2000; 24 (05) 744-747
  • 54 Tuthill HL, Finkelstein ER, Sanchez AM, Clifford PD, Subhawong TK, Jose J. Imaging of tarsal navicular disorders: a pictorial review. Foot Ankle Spec 2014; 7 (03) 211-225
  • 55 So E, Zulauf E, Weber JS, Hyer CF. Osteochondral defect of the calcaneocuboid joint: a case study. J Foot Ankle Surg 2019; 58 (03) 567-572
  • 56 Thomas AP, Dwyer NS. Osteochondral defects of the first metatarsal head in adolescence: a stage in the development of hallux rigidus. J Pediatr Orthop 1989; 9 (02) 236-239
  • 57 Bruno MA, Marcos RF, Wagner FV, Wagner FV. Treatment of osteochondral lesion of the first metatarsal head: osteochondral graft transplantation combined with Moberg osteotomy: case report. Foot Ankle Spec 2021; 14 (06) 515-520
  • 58 Van Dyke B, Berlet GC, Daigre JL, Hyer CF, Philbin TM. First metatarsal head osteochondral defect treatment with particulated juvenile cartilage allograft transplantation: a case series. Foot Ankle Int 2018; 39 (02) 236-241
  • 59 Sherman TI, Kern M, Marcel J, Butler A, McGuigan FX. First metatarsophalangeal joint arthroscopy for osteochondral lesions. Arthrosc Tech 2016; 5 (03) e513-e518
  • 60 Choi CH, Ogilvie-Harris DJ. Occult osteochondral fractures of the subtalar joint: a review of 10 patients. J Foot Ankle Surg 2002; 41 (01) 40-43
  • 61 Kadakia AP, Sarkar J. Osteochondritis dissecans of the talus involving the subtalar joint: a case report. J Foot Ankle Surg 2007; 46 (06) 488-492
  • 62 Moonot P, Sharma G. Osteochondritis dissecans of the lateral process of talus involving the subtalar joint: an unusual case. J Foot Ankle Surg 2021; 60 (03) 630-633
  • 63 McGahan PJ, Pinney SJ. Current concept review: osteochondral lesions of the talus. Foot Ankle Int 2010; 31 (01) 90-101
  • 64 Canale ST, Belding RH. Osteochondral lesions of the talus. J Bone Joint Surg Am 1980; 62 (01) 97-102
  • 65 McCullough CJ, Venugopal V. Osteochondritis dissecans of the talus: the natural history. Clin Orthop Relat Res 1979; (144) 264-268
  • 66 Robinson DE, Winson IG, Harries WJ, Kelly AJ. Arthroscopic treatment of osteochondral lesions of the talus. J Bone Joint Surg Br 2003; 85 (07) 989-993
  • 67 Schimmer RC, Dick W, Hintermann B. The role of ankle arthroscopy in the treatment strategies of osteochondritis dissecans lesions of the talus. Foot Ankle Int 2001; 22 (11) 895-900
  • 68 Nehrer S, Spector M, Minas T. Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res 1999; (365) 149-162
  • 69 Rothrauff BB, Tuan RS. Cellular therapy in bone-tendon interface regeneration. Organogenesis 2014; 10 (01) 13-28
  • 70 Kelbérine F, Frank A. Arthroscopic treatment of osteochondral lesions of the talar dome: a retrospective study of 48 cases. Arthroscopy 1999; 15 (01) 77-84
  • 71 Schuman L, Struijs PA, van Dijk CN. Arthroscopic treatment for osteochondral defects of the talus. Results at follow-up at 2 to 11 years. J Bone Joint Surg Br 2002; 84 (03) 364-368
  • 72 Savva N, Jabur M, Davies M, Saxby T. Osteochondral lesions of the talus: results of repeat arthroscopic debridement. Foot Ankle Int 2007; 28 (06) 669-673
  • 73 Donnenwerth MP, Roukis TS. Outcome of arthroscopic debridement and microfracture as the primary treatment for osteochondral lesions of the talar dome. Arthroscopy 2012; 28 (12) 1902-1907
  • 74 Kumai T, Takakura Y, Higashiyama I, Tamai S. Arthroscopic drilling for the treatment of osteochondral lesions of the talus. J Bone Joint Surg Am 1999; 81 (09) 1229-1235
  • 75 Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 2003; 85-A (Suppl (Suppl. 02) 25-32
  • 76 Cunningham DJ, Adams SB. Arthroscopic treatment of osteochondral lesions of the talus with microfracture and platelet-rich plasma-infused micronized cartilage allograft. Arthrosc Tech 2020; 9 (05) e627-e637
  • 77 Anders S, Lechler P, Rackl W, Grifka J, Schaumburger J. Fluoroscopy-guided retrograde core drilling and cancellous bone grafting in osteochondral defects of the talus. Int Orthop 2012; 36 (08) 1635-1640
  • 78 Kono M, Takao M, Naito K, Uchio Y, Ochi M. Retrograde drilling for osteochondral lesions of the talar dome. Am J Sports Med 2006; 34 (09) 1450-1456
  • 79 Giannini S, Buda R, Grigolo B, Vannini F. Autologous chondrocyte transplantation in osteochondral lesions of the ankle joint. Foot Ankle Int 2001; 22 (06) 513-517
  • 80 Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G. Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy 2006; 22 (10) 1085-1092
  • 81 Sammarco GJ, Makwana NK. Treatment of talar osteochondral lesions using local osteochondral graft. Foot Ankle Int 2002; 23 (08) 693-698
  • 82 Steele JR, Dekker TJ, Federer AE, Liles JL, Adams SB, Easley ME. Osteochondral lesions of the talus: current concepts in diagnosis and treatment. Foot Ankle Orthop 2018;3(03): doi: 247301141877955
  • 83 Enneking WF, Campanacci DA. Retrieved human allografts : a clinicopathological study. J Bone Joint Surg Am 2001; 83 (07) 971-986
  • 84 Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg Am 1991; 73 (08) 1123-1142
  • 85 Williams SK, Amiel D, Ball ST. et al. Prolonged storage effects on the articular cartilage of fresh human osteochondral allografts. J Bone Joint Surg Am 2003; 85 (11) 2111-2120
  • 86 Coetzee JC, Giza E, Schon LC. et al. Treatment of osteochondral lesions of the talus with particulated juvenile cartilage. Foot Ankle Int 2013; 34 (09) 1205-1211
  • 87 Adams Jr SB, Demetracopoulos CA, Parekh SG, Easley ME, Robbins J. Arthroscopic particulated juvenile cartilage allograft transplantation for the treatment of osteochondral lesions of the talus. Arthrosc Tech 2014; 3 (04) e533-e537
  • 88 Baums MH, Heidrich G, Schultz W, Steckel H, Kahl E, Klinger HM. The surgical technique of autologous chondrocyte transplantation of the talus with use of a periosteal graft. Surgical technique. J Bone Joint Surg Am 2007; 89 (Suppl 2 Pt.2): 170-182
  • 89 Nam EK, Ferkel RD, Applegate GR. Autologous chondrocyte implantation of the ankle: a 2- to 5-year follow-up. Am J Sports Med 2009; 37 (02) 274-284
  • 90 Brittberg M, Peterson L, Sjögren-Jansson E, Tallheden T, Lindahl A. Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J Bone Joint Surg Am 2003; 85-A (Suppl (Suppl. 03) 109-115
  • 91 Baums MH, Heidrich G, Schultz W, Steckel H, Kahl E, Klinger HM. Autologous chondrocyte transplantation for treating cartilage defects of the talus. J Bone Joint Surg Am 2006; 88 (02) 303-308
  • 92 Giannini S, Buda R, Ruffilli A. et al. Arthroscopic autologous chondrocyte implantation in the ankle joint. Knee Surg Sports Traumatol Arthrosc 2014; 22 (06) 1311-1319
  • 93 Kwak SK, Kern BS, Ferkel RD, Chan KW, Kasraeian S, Applegate GR. Autologous chondrocyte implantation of the ankle: 2- to 10-year results. Am J Sports Med 2014; 42 (09) 2156-2164
  • 94 Magnan B, Samaila E, Bondi M, Vecchini E, Micheloni GM, Bartolozzi P. Three-dimensional matrix-induced autologous chondrocytes implantation for talus osteochondral lesions. J Orthop Traumatol 2012; 13: S76-S77
  • 95 Giza E, Sullivan M, Ocel D. et al. Matrix-induced autologous chondrocyte implantation of talus articular defects. Foot Ankle Int 2010; 31 (09) 747-753
  • 96 Schneider TE, Karaikudi S. Matrix-induced autologous chondrocyte implantation (MACI) grafting for osteochondral lesions of the talus. Foot Ankle Int 2009; 30 (09) 810-814
  • 97 Niemeyer P, Salzmann G, Schmal H, Mayr H, Südkamp NP. Autologous chondrocyte implantation for the treatment of chondral and osteochondral defects of the talus: a meta-analysis of available evidence. Knee Surg Sports Traumatol Arthrosc 2012; 20 (09) 1696-1703
  • 98 Giannini S, Buda R, Cavallo M. et al. Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury 2010; 41 (11) 1196-1203
  • 99 van Dijk PAD, Murawski CD, Hunt KJ. et al; International Consensus Group on Cartilage Repair of the Ankle. Post-treatment follow-up, imaging, and outcome scores: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle. Foot Ankle Int 2018; 39 (1_suppl, suppl): 68S-73S
  • 100 Marlovits S, Striessnig G, Resinger CT. et al. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 2004; 52 (03) 310-319
  • 101 Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 2006; 57 (01) 16-23
  • 102 Alparslan L, Winalski CS, Boutin RD, Minas T. Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskelet Radiol 2001; 5 (04) 345-363
  • 103 Brusalis CM, Greditzer IV HG, Fabricant PD, Stannard JP, Cook JL. BioCartilage augmentation of marrow stimulation procedures for cartilage defects of the knee: two-year clinical outcomes. Knee 2020; 27 (05) 1418-1425
  • 104 Roukis TS, Kang RB. Vascularized pedicled fibula onlay bone graft augmentation for complicated tibiotalocalcaneal arthrodesis with retrograde intramedullary nail fixation: a case series. J Foot Ankle Surg 2016; 55 (04) 857-867