Semin Musculoskelet Radiol 2023; 27(04): 397-410
DOI: 10.1055/s-0043-1768451
Review Article

Computed Tomography Bone Imaging: Pushing the Boundaries in Clinical Practice

1   Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy, France
2   Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, Nancy, France
3   Université de Lorraine, INSERM, IADI, Nancy, France
,
Fatma Boubaker
1   Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy, France
,
Gabriela Hossu
2   Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, Nancy, France
3   Université de Lorraine, INSERM, IADI, Nancy, France
,
Anthony Thay
4   Canon Medical Systems France, Suresnes, France
,
Pierre Gillet
5   Université de Lorraine, CNRS, IMoPA, Nancy, France
,
Alain Blum
1   Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy, France
2   Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, Nancy, France
3   Université de Lorraine, INSERM, IADI, Nancy, France
,
Pedro Augusto Gondim Teixeira
1   Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy, France
2   Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, Nancy, France
3   Université de Lorraine, INSERM, IADI, Nancy, France
› Author Affiliations

Abstract

Bone microarchitecture has several clinical implications over and above estimating bone strength. Computed tomography (CT) analysis mainly uses high-resolution peripheral quantitative CT and micro-CT, research imaging techniques, most often limited to peripheral skeleton assessment. Ultra-high-resolution (UHR) CT and photon-counting detector CT, two commercially available techniques, provide images that can approach the spatial resolution of the trabeculae, bringing bone microarchitecture analysis into clinical practice and improving depiction of bone vascularization, tumor matrix, and cortical and periosteal bone. This review presents bone microarchitecture anatomy, principles of analysis, reference measurements, and an update on the performance and potential clinical applications of these new CT techniques. We also share our clinical experience and technical considerations using an UHR-CT device.



Publication History

Article published online:
25 September 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Roski F, Hammel J, Mei K. et al. Bone mineral density measurements derived from dual-layer spectral CT enable opportunistic screening for osteoporosis. Eur Radiol 2019; 29 (11) 6355-6363
  • 2 Nowak T, Eberhard M, Schmidt B. et al. Bone mineral density quantification from localizer radiographs: accuracy and precision of energy-integrating detector CT and photon-counting detector CT. Radiology 2021; 298 (01) 147-152
  • 3 Peña JA, Klein L, Maier J. et al. Dose-efficient assessment of trabecular microstructure using ultra-high-resolution photon-counting CT. Z Med Phys 2022; 32 (04) 403-416
  • 4 Thomsen FSL, Horstmeier S, Niehoff JH, Peña JA, Borggrefe J. Effective spatial resolution of photon counting CT for imaging of trabecular structures is superior to conventional clinical CT and similar to high resolution peripheral CT. Invest Radiol 2022; 57 (09) 620-626
  • 5 Guha I, Zhang X, Rajapakse CS, Chang G, Saha PK. Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modeling. Med Phys 2022; 49 (06) 3886-3899
  • 6 Macintyre NJ, Lorbergs AL. Imaging-based methods for non-invasive assessment of bone properties influenced by mechanical loading. Physiother Can 2012; 64 (02) 202-215
  • 7 Diomede F, Marconi GD, Fonticoli L. et al. Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci 2020; 21 (09) 3242
  • 8 Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 2017; 20 (03) 291-302
  • 9 García JR, García AJ. Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Deliv Transl Res 2016; 6 (02) 77-95
  • 10 Zhang J, Pan J, Jing W. Motivating role of type H vessels in bone regeneration. Cell Prolif 2020; 53 (09) e12874
  • 11 Watson EC, Adams RH. Biology of bone: the vasculature of the skeletal system. Cold Spring Harb Perspect Med 2018; 8 (07) a031559
  • 12 Tomlinson RE, Silva MJ. Skeletal blood flow in bone repair and maintenance. Bone Res 2013; 1 (04) 311-322
  • 13 Griffith JF, van der Heijden RA. Bone marrow MR perfusion imaging and potential for tumor evaluation. Skeletal Radiol 2023; 52 (03) 477-491
  • 14 Wazzani R, Pallu S, Bourzac C, Ahmaïdi S, Portier H, Jaffré C. Physical activity and bone vascularization: a way to explore in bone repair context?. Life (Basel) 2021; 11 (08) 783
  • 15 Allen H, Barnthouse NC, Chan BY. Periosteal pathologic conditions: imaging findings and pathophysiology. Radiographics 2023; 43 (02) e220120
  • 16 Kumar A, Ghosh R. A review on experimental and numerical investigations of cortical bone fracture. Proc Inst Mech Eng H 2022; 236 (03) 297-319
  • 17 Lell MM, Kachelrieß M. Recent and upcoming technological developments in computed tomography: high speed, low dose, deep learning, multienergy. Invest Radiol 2020; 55 (01) 8-19
  • 18 Kijowski R, Fritz J. Emerging technology in musculoskeletal MRI and CT. Radiology 2023; 306 (01) 6-19
  • 19 Hernandez AM, Shin DW, Abbey CK. et al. Validation of synthesized normal-resolution image data generated from high-resolution acquisitions on a commercial CT scanner. Med Phys 2020; 47 (10) 4775-4785
  • 20 Klose-Jensen R, Tse JJ, Keller KK. et al. High-resolution peripheral quantitative computed tomography for bone evaluation in inflammatory rheumatic disease. Front Med (Lausanne) 2020; 7: 337
  • 21 Zhang X, Comellas AP, Regan EA. et al. Quantitative CT-based methods for bone microstructural measures and their relationships with vertebral fractures in a pilot study on smokers. JBMR Plus 2021; 5 (05) e10484
  • 22 Inai R, Nakahara R, Morimitsu Y. et al. Bone microarchitectural analysis using ultra-high-resolution CT in tiger vertebra and human tibia. Eur Radiol Exp 2020; 4 (01) 4
  • 23 Tayman MA, Kamburoğlu K, Ocak M, Özen D. Effect of different voxel sizes on the accuracy of CBCT measurements of trabecular bone microstructure: a comparative micro-CT study. Imaging Sci Dent 2022; 52 (02) 171-179
  • 24 Klintström B, Henriksson L, Moreno R. et al. Photon-counting detector CT and energy-integrating detector CT for trabecular bone microstructure analysis of cubic specimens from human radius. Eur Radiol Exp 2022; 6 (01) 31
  • 25 Oostveen LJ, Boedeker KL, Brink M, Prokop M, de Lange F, Sechopoulos I. Physical evaluation of an ultra-high-resolution CT scanner. Eur Radiol 2020; 30 (05) 2552-2560
  • 26 Qiu X, Shi X, Ouyang J, Xu D, Zhao D. A method to quantify and visualize femoral head intraosseous arteries by micro-CT. J Anat 2016; 229 (02) 326-333
  • 27 Hunt HB, Donnelly E. Bone quality assessment techniques: geometric, compositional, and mechanical characterization from macroscale to nanoscale. Clin Rev Bone Miner Metab 2016; 14 (03) 133-149
  • 28 Shi G, Subramanian S, Cao Q, Demehri S, Siewerdsen JH, Zbijewski W. Application of a novel ultra-high resolution multi-detector CT in quantitative imaging of trabecular microstructure. Proc SPIE Int Soc Opt Eng 2020; 11317: 113171E
  • 29 Hernandez AM, Wu P, Mahesh M, Siewerdsen JH, Boone JM. Location and direction dependence in the 3D MTF for a high-resolution CT system. Med Phys 2021; 48 (06) 2760-2771
  • 30 Kakinuma R, Moriyama N, Muramatsu Y. et al. Ultra-high-resolution computed tomography of the lung: image quality of a prototype scanner. PloS One 2015; 10 (09) e0137165
  • 31 Gondim Teixeira PA, Villani N, Ait Idir M. et al. Ultra-high resolution computed tomography of joints: practical recommendations for acquisition protocol optimization. Quant Imaging Med Surg 2021; 11 (10) 4287-4298
  • 32 Blum A, Gillet R, Rauch A. et al. 3D reconstructions, 4D imaging and postprocessing with CT in musculoskeletal disorders: past, present and future. Diagn Interv Imaging 2020; 101 (11) 693-705
  • 33 Esquivel A, Ferrero A, Mileto A. et al. Photon-counting detector CT: key points radiologists should know. Korean J Radiol 2022; 23 (09) 854-865
  • 34 Baffour FI, Glazebrook KN, Ferrero A. et al. Photon-counting detector CT for musculoskeletal imaging: a clinical perspective. AJR Am J Roentgenol 2023; 220 (04) 551-560
  • 35 Rajendran K, Petersilka M, Henning A. et al. First clinical photon-counting detector CT system: technical evaluation. Radiology 2022; 303 (01) 130-138
  • 36 Tsuji K, Kitamura M, Chiba K. et al. Comparison of bone microstructures via high-resolution peripheral quantitative computed tomography in patients with different stages of chronic kidney disease before and after starting hemodialysis. Ren Fail 2022; 44 (01) 381-391
  • 37 Dai X, Fan R, Wu H, Jia Z. Investigation on the differences in the failure processes of the cortical bone under different loading conditions. Appl Bionics Biomech 2022; 2022: 3406984
  • 38 Saha PK, Borgefors G, Sanniti di Baja G. Skeletonization and its applications—a review. In: Saha PK, Borgefors G, Sanniti di Baja G. eds. Skeletonization. Cambridge, MA: Academic Press; 2017: 3-42
  • 39 Jang S, Graffy PM, Ziemlewicz TJ, Lee SJ, Summers RM, Pickhardt PJ. Opportunistic osteoporosis screening at routine abdominal and thoracic CT: normative L1 trabecular attenuation values in more than 20 000 adults. Radiology 2019; 291 (02) 360-367
  • 40 Cheng S, Sipilä S, Taaffe DR, Puolakka J, Suominen H. Change in bone mass distribution induced by hormone replacement therapy and high-impact physical exercise in post-menopausal women. Bone 2002; 31 (01) 126-135
  • 41 Khosla S, Riggs BL, Atkinson EJ. et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 2006; 21 (01) 124-131
  • 42 Boyd SK, Davison P, Müller R, Gasser JA. Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone 2006; 39 (04) 854-862
  • 43 Armas LAG, Akhter MP, Drincic A, Recker RR. Trabecular bone histomorphometry in humans with type 1 diabetes mellitus. Bone 2012; 50 (01) 91-96
  • 44 Dempster DW, Cosman F, Kurland ES. et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res 2001; 16 (10) 1846-1853
  • 45 Rajendran K, Baffour F, Powell G. et al. Improved visualization of the wrist at lower radiation dose with photon-counting-detector CT. Skeletal Radiol 2023; 52 (01) 23-29
  • 46 Hsieh SS, Leng S, Rajendran K, Tao S, McCollough CH. Photon counting CT: clinical applications and future developments. IEEE Trans Radiat Plasma Med Sci 2021; 5 (04) 441-452
  • 47 Baffour FI, Rajendran K, Glazebrook KN. et al. Ultra-high-resolution imaging of the shoulder and pelvis using photon-counting-detector CT: a feasibility study in patients. Eur Radiol 2022; 32 (10) 7079-7086
  • 48 Kushchayeva YS, Kushchayev SV, Glushko TY. et al. Fibrous dysplasia for radiologists: beyond ground glass bone matrix. Insights Imaging 2018; 9 (06) 1035-1056
  • 49 Misaghi A, Goldin A, Awad M, Kulidjian AA. Osteosarcoma: a comprehensive review. SICOT J 2018; 4: 12
  • 50 Li H, Gao J, Gao Y, Lin N, Zheng M, Ye Z. Denosumab in giant cell tumor of bone: current status and pitfalls. Front Oncol 2020; 10: 580605
  • 51 Aydıngöz Ü, Yıldız AE, Ergen FB. Zero echo time musculoskeletal MRI: technique, optimization, applications, and pitfalls. Radiographics 2022; 42 (05) 1398-1414