Semin Neurol 2023; 43(04): 645-660
DOI: 10.1055/s-0043-1771460
Review Article

Gastrointestinal Dysfunction in Genetically Defined Neurodevelopmental Disorders

Elizabeth A. Davidson
1   Department of Biology, University of Miami, Coral Gables, Miami, Florida
,
Calliope Holingue
2   Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, Maryland
3   Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
,
Andres Jimenez-Gomez
4   Neuroscience Center, Joe DiMaggio Children's Hospital, Hollywood, Florida
5   Department of Child Neurology, Florida Atlantic University Stiles - Nicholson Brain Institute, Jupiter, Florida
,
Julia E. Dallman
1   Department of Biology, University of Miami, Coral Gables, Miami, Florida
,
Baharak Moshiree
6   Atrium Health, Wake Forest Medical University, Charlotte, North Carolina
› Institutsangaben
Funding The pilot study was funded by NIH R21HD093021 to J.E.D. and B.M. and our Wake Forest Shark Tank Grant to Jessica Sang was a GI fellow that worked with Dr. Moshiree Mentor for this project was Dr. Moshiree. She did not have authorship.

Abstract

Gastrointestinal symptoms are common in most forms of neurodevelopment disorders (NDDs) such as in autism spectrum disorders (ASD). The current patient-reported outcome measures with validated questionnaires used in the general population of children without NDDS cannot be used in the autistic individuals. We explore here the multifactorial pathophysiology of ASD and the role of genetics and the environment in this disease spectrum and focus instead on possible diagnostics that could provide future objective insight into the connection of the gut-brain-microbiome in this disease entity. We provide our own data from both humans and a zebrafish model of ASD called Phelan-McDermid Syndrome. We hope that this review highlights the gaps in our current knowledge on many of these profound NDDs and that it provides a future framework upon which clinicians and researchers can build and network with other interested multidisciplinary specialties.



Publikationsverlauf

Artikel online veröffentlicht:
16. August 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Myers SM, Challman TD. Autism Spectrum Disorder. 2nd ed.. American Academy of Pediatrics; 2018
  • 2 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed.. Washington, DC: 2013
  • 3 Baxter AJ, Brugha TS, Erskine HE, Scheurer RW, Vos T, Scott JG. The epidemiology and global burden of autism spectrum disorders. Psychol Med 2015; 45 (03) 601-613
  • 4 Zeidan J, Fombonne E, Scorah J. et al. Global prevalence of autism: a systematic review update. Autism Res 2022; 15 (05) 778-790
  • 5 Rice CE, Rosanoff M, Dawson G. et al. Evaluating changes in the prevalence of the autism spectrum disorders (ASDs). Public Health Rev 2012; 34 (02) 1-22
  • 6 Lyall K, Croen L, Daniels J. et al. The changing epidemiology of autism spectrum disorders. Annu Rev Public Health 2017; 38: 81-102
  • 7 Moreno-De-Luca A, Myers SM, Challman TD, Moreno-De-Luca D, Evans DW, Ledbetter DH. Developmental brain dysfunction: revival and expansion of old concepts based on new genetic evidence. Lancet Neurol 2013; 12 (04) 406-414
  • 8 Yasuda Y, Matsumoto J, Miura K, Hasegawa N, Hashimoto R. Genetics of autism spectrum disorders and future direction. J Hum Genet 2023; 68 (03) 193-197
  • 9 Satterstrom FK, Kosmicki JA, Wang J. et al; Autism Sequencing Consortium, iPSYCH-Broad Consortium. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 2020; 180 (03) 568-584.e23
  • 10 Holingue C, Newill C, Lee LC, Pasricha PJ, Daniele Fallin M. Gastrointestinal symptoms in autism spectrum disorder: a review of the literature on ascertainment and prevalence. Autism Res 2018; 11 (01) 24-36
  • 11 Wang J, Ma B, Wang J, Zhang Z, Chen O. Global prevalence of autism spectrum disorder and its gastrointestinal symptoms: a systematic review and meta-analysis. Front Psychiatry 2022; 13: 963102
  • 12 Buie T, Campbell DB, Fuchs III GJ. et al. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics 2010; 125 (Suppl. 01) S1-S18
  • 13 Tory JC, Joel ER, Joni JB, Terry SF, Jeffrey RL, Marc SA. Constipation associated with self-injurious and aggressive behavior exhibited by a child diagnosed with autism. Educ Treat Child 2008; 32 (01) 89-103
  • 14 Coury DL, Ashwood P, Fasano A. et al. Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics 2012; 130 (Suppl. 02) S160-S168
  • 15 Fulceri F, Morelli M, Santocchi E. et al. Gastrointestinal symptoms and behavioral problems in preschoolers with autism spectrum disorder. Dig Liver Dis 2016; 48 (03) 248-254
  • 16 Kral TV, Eriksen WT, Souders MC, Pinto-Martin JA. Eating behaviors, diet quality, and gastrointestinal symptoms in children with autism spectrum disorders: a brief review. J Pediatr Nurs 2013; 28 (06) 548-556
  • 17 Maenner MJ, Arneson CL, Levy SE, Kirby RS, Nicholas JS, Durkin MS. Brief report: association between behavioral features and gastrointestinal problems among children with autism spectrum disorder. J Autism Dev Disord 2012; 42 (07) 1520-1525
  • 18 Mannion A, Leader G. Gastrointestinal symptoms in autism spectrum disorder: a literature review. Rev J Autism Dev Disord 2013; 1 (01) 11-17
  • 19 Mazefsky CA, Schreiber DR, Olino TM, Minshew NJ. The association between emotional and behavioral problems and gastrointestinal symptoms among children with high-functioning autism. Autism 2014; 18 (05) 493-501
  • 20 Mazurek MO, Vasa RA, Kalb LG. et al. Anxiety, sensory over-responsivity, and gastrointestinal problems in children with autism spectrum disorders. J Abnorm Child Psychol 2013; 41 (01) 165-176
  • 21 Peters B, Williams KC, Gorrindo P. et al. Rigid-compulsive behaviors are associated with mixed bowel symptoms in autism spectrum disorder. J Autism Dev Disord 2014; 44 (06) 1425-1432
  • 22 Radford J, Anderson M. Encopresis in children on the autistic spectrum. Early Child Dev Care 2003; 173 (04) 375-382
  • 23 Vissoker RE, Latzer Y, Gal E. Eating and feeding problems and gastrointestinal dysfunction in autism spectrum disorders. Res Autism Spectr Disord 2015; 12: 10-21
  • 24 Holingue C, Kalb LG, Musci R. et al. Characteristics of the autism spectrum disorder gastrointestinal and related behaviors inventory in children. Autism Res 2022; 15 (06) 1142-1155
  • 25 Holingue C, Poku O, Pfeiffer D, Murray S, Fallin MD. Gastrointestinal concerns in children with autism spectrum disorder: a qualitative study of family experiences. Autism 2022; 26 (07) 1698-1711
  • 26 Penzol MJ, Salazar de Pablo G, Llorente C. et al. Functional gastrointestinal disease in autism spectrum disorder: a retrospective descriptive study in a clinical sample. Front Psychiatry 2019; 10: 179
  • 27 Guan J, Li G. Injury mortality in individuals with autism. Am J Public Health 2017; 107 (05) 791-793
  • 28 Margolis KG, Buie TM, Turner JB. et al. Development of a brief parent-report screen for common gastrointestinal disorders in autism spectrum disorder. J Autism Dev Disord 2019; 49 (01) 349-362
  • 29 Lukens CT, Linscheid TR. Development and validation of an inventory to assess mealtime behavior problems in children with autism. J Autism Dev Disord 2008; 38 (02) 342-352
  • 30 Consortium for autism, neurodevelopmental disorders & digestive diseases. Zugriff am 23. Juni 2023 unter: https://www.candidgi.com/
  • 31 De Rubeis S, Siper PM, Durkin A. et al. Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations. Mol Autism 2018; 9: 31
  • 32 Phelan K, McDermid HE. The 22q13.3 deletion syndrome (Phelan-McDermid syndrome). Mol Syndromol 2012; 2 (3-5): 186-201
  • 33 Naisbitt S, Kim E, Tu JC. et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 1999; 23 (03) 569-582
  • 34 Arons MH, Thynne CJ, Grabrucker AM. et al. Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling. J Neurosci 2012; 32 (43) 14966-14978
  • 35 Bozdagi O, Tavassoli T, Buxbaum JD. Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay. Mol Autism 2013; 4 (01) 9
  • 36 Peça J, Feliciano C, Ting JT. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 2011; 472 (7344) 437-442
  • 37 Yang M, Bozdagi O, Scattoni ML. et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci 2012; 32 (19) 6525-6541
  • 38 Kozol RA, Cukier HN, Zou B. et al. Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis. Hum Mol Genet 2015; 24 (14) 4006-4023
  • 39 Kozol RA, James DM, Varela I, Sumathipala SH, Züchner S, Dallman JE. Restoring Shank3 in the rostral brainstem of shank3ab-/-zebrafish autism models rescues sensory deficits. Commun Biol 2021; 4 (01) 1411
  • 40 Breen MS, Browne A, Hoffman GE. et al. Transcriptional signatures of participant-derived neural progenitor cells and neurons implicate altered Wnt signaling in Phelan-McDermid syndrome and autism. Mol Autism 2020; 11 (01) 53
  • 41 Harris KP, Akbergenova Y, Cho RW, Baas-Thomas MS, Littleton JT. Shank modulates postsynaptic wnt signaling to regulate synaptic development. J Neurosci 2016; 36 (21) 5820-5832
  • 42 Orefice LL, Mosko JR, Morency DT. et al. Targeting peripheral somatosensory neurons to improve tactile-related phenotypes in ASD models. Cell 2019; 178 (04) 867-886.e24
  • 43 James DM, Kozol RA, Kajiwara Y. et al. Intestinal dysmotility in a zebrafish (Danio rerio) shank3a; shank3b mutant model of autism. Mol Autism 2019; 10: 3
  • 44 Sauer AK, Bockmann J, Steinestel K, Boeckers TM, Grabrucker AM. Altered intestinal morphology and microbiota composition in the autism spectrum disorders associated SHANK3 mouse model. Int J Mol Sci 2019; 20 (09) 2134
  • 45 Pfaender S, Sauer AK, Hagmeyer S. et al. Zinc deficiency and low enterocyte zinc transporter expression in human patients with autism related mutations in SHANK3. Sci Rep 2017; 7: 45190
  • 46 Leblond CS, Nava C, Polge A. et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet 2014; 10 (09) e1004580
  • 47 Betancur C, Buxbaum JD. SHANK3 haploinsufficiency: a “common” but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism 2013; 4 (01) 17
  • 48 Soorya L, Kolevzon A, Zweifach J. et al. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol Autism 2013; 4 (01) 18
  • 49 Sarasua SM, Boccuto L, Sharp JL. et al. Clinical and genomic evaluation of 201 patients with Phelan-McDermid syndrome. Hum Genet 2014; 133 (07) 847-859
  • 50 Kolevzon A, Angarita B, Bush L. et al. Phelan-McDermid syndrome: a review of the literature and practice parameters for medical assessment and monitoring. J Neurodev Disord 2014; 6 (01) 39
  • 51 Witmer C, Mattingly A, D'Souza P, Thurm A, Hadigan C. Incontinence in Phelan-McDermid syndrome. J Pediatr Gastroenterol Nutr 2019; 69 (02) e39-e42
  • 52 Goodspeed K, Bliss G, Linnehan D. Bringing everyone to the table - findings from the 2018 Phelan-McDermid syndrome foundation international conference. Orphanet J Rare Dis 2020; 15 (01) 152
  • 53 Kusnik A, Vaqar S. Rumination disorder. BTI - StatPearls. May, 2023
  • 54 Kohlenberg TM, Trelles MP, McLarney B, Betancur C, Thurm A, Kolevzon A. Psychiatric illness and regression in individuals with Phelan-McDermid syndrome. J Neurodev Disord 2020; 12 (01) 7
  • 55 Hussong J, Wagner C, Curfs L, von Gontard A. Incontinence and psychological symptoms in Phelan-McDermid syndrome. Neurourol Urodyn 2020; 39 (01) 310-318
  • 56 Yap CX, Henders AK, Alvares GA. et al. Autism-related dietary preferences mediate autism-gut microbiome associations. Cell 2021; 184 (24) 5916-5931.e17
  • 57 Tack J, Tornblom H, Tan V, Carbone F. Evidence-based and emerging dietary approaches to upper disorders of gut-brain interaction. Am J Gastroenterol 2022; 117 (06) 965-972
  • 58 Bandini LG, Curtin C, Phillips S, Anderson SE, Maslin M, Must A. Changes in food selectivity in children with autism spectrum disorder. J Autism Dev Disord 2017; 47 (02) 439-446
  • 59 Devi N, Madaan P, Kandoth N, Bansal D, Sahu JK. Efficacy and safety of dietary therapies for childhood drug-resistant epilepsy: a systematic review and network meta-analysis. JAMA Pediatr 2023; 177 (03) 258-266
  • 60 Grabrucker AM. A role for synaptic zinc in ProSAP/Shank PSD scaffold malformation in autism spectrum disorders. Dev Neurobiol 2014; 74 (02) 136-146
  • 61 Grabrucker S, Jannetti L, Eckert M. et al. Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism spectrum disorders. Brain 2014; 137 (Pt 1): 137-152
  • 62 Bruno G, Zaccari P, Rocco G. et al. Proton pump inhibitors and dysbiosis: current knowledge and aspects to be clarified. World J Gastroenterol 2019; 25 (22) 2706-2719
  • 63 Hojsak I, Ivković L, Trbojević T. et al. The role of combined 24-h multichannel intraluminal impedance-pH monitoring in the evaluation of children with gastrointestinal symptoms suggesting gastro-esophageal reflux disease. Neurogastroenterol Motil 2016; 28 (10) 1488-1493
  • 64 Rodriguez L, Morley-Fletcher A, Souza A, Rosengaus L, Nurko S. Effect of anesthesia on gastroesophageal reflux in children: a study using BRAVO wireless pH study measurements. Neurogastroenterol Motil 2015; 27 (11) 1553-1558
  • 65 Forootan M, Bagheri N, Darvishi M. Chronic constipation: a review of literature. Medicine (Baltimore) 2018; 97 (20) e10631
  • 66 Jimenez-Gomez A, Niu S, Andujar-Perez F. et al. Phenotypic characterization of individuals with SYNGAP1 pathogenic variants reveals a potential correlation between posterior dominant rhythm and developmental progression. J Neurodev Disord 2019; 11 (01) 18
  • 67 Van Dijck A, Vulto-van Silfhout AT, Cappuyns E. et al; ADNP Consortium. Clinical presentation of a complex neurodevelopmental disorder caused by mutations in ADNP. Biol Psychiatry 2019; 85 (04) 287-297
  • 68 Chaidez V, Hansen RL, Hertz-Picciotto I. Gastrointestinal problems in children with autism, developmental delays or typical development. J Autism Dev Disord 2014; 44 (05) 1117-1127
  • 69 McCue LM, Flick LH, Twyman KA, Xian H. Gastrointestinal dysfunctions as a risk factor for sleep disorders in children with idiopathic autism spectrum disorder: a retrospective cohort study. Autism 2017; 21 (08) 1010-1020
  • 70 Marler S, Ferguson BJ, Lee EB. et al. Brief report: whole blood serotonin levels and gastrointestinal symptoms in autism spectrum disorder. J Autism Dev Disord 2016; 46 (03) 1124-1130
  • 71 Barboza JL, Okun MS, Moshiree B. The treatment of gastroparesis, constipation and small intestinal bacterial overgrowth syndrome in patients with Parkinson's disease. Expert Opin Pharmacother 2015; 16 (16) 2449-2464
  • 72 Bielefeldt K, Tuteja A, Nusrat S. Disorders of gastrointestinal hypomotility. F1000Res 2016; 5 DOI: 10.12688/f1000research.8658.1.
  • 73 Ramprasad C, Douglas JY, Moshiree B. Parkinson's disease and current treatments for its gastrointestinal neurogastromotility effects. Curr Treat Options Gastroenterol 2018; 16 (04) 489-510
  • 74 Gershon MD. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 2013; 20 (01) 14-21
  • 75 Margolis KG, Li Z, Stevanovic K. et al. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function. J Clin Invest 2016; 126 (06) 2221-2235
  • 76 Fröhlich H, Kollmeyer ML, Linz VC. et al. Gastrointestinal dysfunction in autism displayed by altered motility and achalasia in Foxp1 +/- mice. Proc Natl Acad Sci U S A 2019; 116 (44) 22237-22245
  • 77 Grubišić V, Kennedy AJ, Sweatt JD, Parpura V. Pitt-Hopkins mouse model has altered particular gastrointestinal transits in vivo. Autism Res 2015; 8 (05) 629-633
  • 78 Hayot G, Massonot M, Keime C, Faure E, Golzio C. Loss of autism-candidate CHD8 perturbs neural crest development and intestinal homeostatic balance. Life Sci Alliance 2022; 6 (01) e202201456
  • 79 Hosie S, Ellis M, Swaminathan M. et al. Gastrointestinal dysfunction in patients and mice expressing the autism-associated R451C mutation in neuroligin-3. Autism Res 2019; 12 (07) 1043-1056
  • 80 Joshi S, Parmar S, Kalavant A, Shah L, Parmar D. Effectiveness of structured physiotherapy in constipation in children with neurodevelopmental disorders - a randomized trial. Physiother Theory Pract 2022; DOI: 10.1080/09593985.2022.2100299.
  • 81 Gabriele S, Sacco R, Persico AM. Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis. Eur Neuropsychopharmacol 2014; 24 (06) 919-929
  • 82 Golubeva AV, Joyce SA, Moloney G. et al. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine 2017; 24: 166-178
  • 83 Fung TC, Vuong HE, Luna CDG. et al. Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut. Nat Microbiol 2019; 4 (12) 2064-2073
  • 84 Hsiao EY. Immune dysregulation in autism spectrum disorder. Int Rev Neurobiol 2013; 113: 269-302
  • 85 Hsiao EY. Gastrointestinal issues in autism spectrum disorder. Harv Rev Psychiatry 2014; 22 (02) 104-111
  • 86 Yano JM, Yu K, Donaldson GP. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161 (02) 264-276
  • 87 Sjögren K, Engdahl C, Henning P. et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res 2012; 27 (06) 1357-1367
  • 88 Luna RA, Oezguen N, Balderas M. et al. Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. Cell Mol Gastroenterol Hepatol 2016; 3 (02) 218-230
  • 89 Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci 2012; 57 (08) 2096-2102
  • 90 Finegold SM, Dowd SE, Gontcharova V. et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 2010; 16 (04) 444-453
  • 91 Serra J, Pohl D, Azpiroz F. et al; Functional Constipation Guidelines Working Group. European society of neurogastroenterology and motility guidelines on functional constipation in adults. Neurogastroenterol Motil 2020; 32 (02) e13762
  • 92 Andrews CN, Woo M, Buresi M. et al. Prucalopride in diabetic and connective tissue disease-related gastroparesis: randomized placebo-controlled crossover pilot trial. Neurogastroenterol Motil 2021; 33 (01) e13958
  • 93 Carbone F, Van den Houte K, Clevers E. et al. Prucalopride in gastroparesis: a randomized placebo-controlled crossover study. Am J Gastroenterol 2019; 114 (08) 1265-1274
  • 94 Camilleri M, Kuo B, Nguyen L. et al. ACG clinical guideline: Gastroparesis. Am J Gastroenterol 2022; 117 (08) 1197-1220
  • 95 Ziessman HA. Gastrointestinal transit assessment: Role of scintigraphy: Where are we now? where are we going?. Curr Treat Options Gastroenterol 2016; 14 (04) 452-460
  • 96 Rodriguez L, Heinz N, Colliard K, Amicangelo M, Nurko S. Diagnostic and clinical utility of the wireless motility capsule in children: a study in patients with functional gastrointestinal disorders. Neurogastroenterol Motil 2021; 33 (04) e14032
  • 97 Lee AA, Rao S, Nguyen LA. et al. Validation of diagnostic and performance characteristics of the wireless motility capsule in patients with suspected gastroparesis. Clin Gastroenterol Hepatol 2019; 17 (09) 1770-1779.e2
  • 98 Keller J, Hammer HF, Afolabi PR. et al; European 13C-Breath Test Group. European guideline on indications, performance and clinical impact of 13 C-breath tests in adult and pediatric patients: an EAGEN, ESNM, and ESPGHAN consensus, supported by EPC. United European Gastroenterol J 2021; 9 (05) 598-625
  • 99 Orsagh-Yentis DK, Bai S, Bobbey A, Hayes C, Pusateri A, Williams K. Spirulina breath test indicates differences in gastric emptying based on age, gender, and BMI. Neurogastroenterol Motil 2021; 33 (06) e14079
  • 100 Rosen R, Garza JM, Tipnis N, Nurko S. An ANMS-NASPGHAN consensus document on esophageal and antroduodenal manometry in children. Neurogastroenterol Motil 2018; 30 (03) DOI: 10.1111/nmo.13239.
  • 101 Compher C, Rubesin S, Kinosian B, Madaras J, Metz D. Noninvasive measurement of transit time in short bowel syndrome. JPEN J Parenter Enteral Nutr 2007; 31 (03) 240-245
  • 102 Asnicar F, Leeming ER, Dimidi E. et al. Blue poo: impact of gut transit time on the gut microbiome using a novel marker. Gut 2021; 70 (09) 1665-1674
  • 103 Grigg I, Ivashko-Pachima Y, Hait TA. et al. Tauopathy in the young autistic brain: novel biomarker and therapeutic target. Transl Psychiatry 2020; 10 (01) 228
  • 104 Ivashko-Pachima Y, Ganaiem M, Ben-Horin-Hazak I. et al. SH3- and actin-binding domains connect ADNP and SHANK3, revealing a fundamental shared mechanism underlying autism. Mol Psychiatry 2022; 27 (08) 3316-3327
  • 105 Kapitansky O, Giladi E, Jaljuli I, Bereswill S, Heimesaat MM, Gozes I. Microbiota changes associated with ADNP deficiencies: rapid indicators for NAP (CP201) treatment of the ADNP syndrome and beyond. J Neural Transm (Vienna) 2020; 127 (02) 251-263
  • 106 Karmon G, Sragovich S, Hacohen-Kleiman G. et al. Novel ADNP syndrome mice reveal dramatic sex-specific peripheral gene expression with brain synaptic and tau pathologies. Biol Psychiatry 2022; 92 (01) 81-95
  • 107 Amin S, Majumdar A, Mallick AA. et al. Caregiver's perception of epilepsy treatment, quality of life and comorbidities in an international cohort of CDKL5 patients. Hippokratia 2017; 21 (03) 130-135
  • 108 Amin S, Monaghan M, Aledo-Serrano A. et al. International consensus recommendations for the assessment and management of individuals with CDKL5 deficiency disorder. Front Neurol 2022; 13: 874695
  • 109 Fehr S, Wilson M, Downs J. et al. The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet 2013; 21 (03) 266-273
  • 110 Leonard H, Downs J, Benke TA, Swanson L, Olson H, Demarest S. CDKL5 deficiency disorder: clinical features, diagnosis, and management. Lancet Neurol 2022; 21 (06) 563-576
  • 111 Mangatt M, Wong K, Anderson B. et al. Prevalence and onset of comorbidities in the CDKL5 disorder differ from Rett syndrome. Orphanet J Rare Dis 2016; 11: 39
  • 112 Olson HE, Demarest ST, Pestana-Knight EM. et al. Cyclin-dependent kinase-like 5 deficiency disorder: clinical review. Pediatr Neurol 2019; 97: 18-25
  • 113 Olson HE, Daniels CI, Haviland I. et al. Current neurologic treatment and emerging therapies in CDKL5 deficiency disorder. J Neurodev Disord 2021; 13 (01) 40
  • 114 Beighley JS, Hudac CM, Arnett AB. et al. Clinical phenotypes of carriers of mutations in CHD8 or its conserved target genes. Biol Psychiatry 2020; 87 (02) 123-131
  • 115 Douzgou S, Liang HW, Metcalfe K. et al; Deciphering Developmental Disorders Study. The clinical presentation caused by truncating CHD8 variants. Clin Genet 2019; 96 (01) 72-84
  • 116 Ostrowski PJ, Zachariou A, Loveday C. et al. The CHD8 overgrowth syndrome: a detailed evaluation of an emerging overgrowth phenotype in 27 patients. Am J Med Genet C Semin Med Genet 2019; 181 (04) 557-564
  • 117 Yasin H, Gibson WT, Langlois S. et al. A distinct neurodevelopmental syndrome with intellectual disability, autism spectrum disorder, characteristic facies, and macrocephaly is caused by defects in CHD8. J Hum Genet 2019; 64 (04) 271-280
  • 118 Bernier R, Golzio C, Xiong B. et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell 2014; 158 (02) 263-276
  • 119 Badshah N, Mattison KA, Ahmad S. et al. Novel missense CNTNAP2 variant identified in two consanguineous Pakistani families with developmental delay, epilepsy, intellectual disability, and aggressive behavior. Front Neurol 2022; 13: 918022
  • 120 Gregor A, Albrecht B, Bader I. et al. Expanding the clinical spectrum associated with defects in CNTNAP2 and NRXN1. BMC Med Genet 2011; 12: 106
  • 121 Mittal R, Kumar A, Ladda R, Mainali G, Aliu E. Pitt Hopkins-like syndrome 1 with novel CNTNAP2 mutation in siblings. Child Neurol Open 2021; 8: X211055330
  • 122 Smogavec M, Cleall A, Hoyer J. et al. Eight further individuals with intellectual disability and epilepsy carrying bi-allelic CNTNAP2 aberrations allow delineation of the mutational and phenotypic spectrum. J Med Genet 2016; 53 (12) 820-827
  • 123 Tosca L, Drévillon L, Mouka A. et al. Two new cases of interstitial 7q35q36.1 deletion including CNTNAP2 and KMT2C. Mol Genet Genomic Med 2021; 9 (11) e1645
  • 124 Moreno-De-Luca D, Sanders SJ, Willsey AJ. et al. Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Mol Psychiatry 2013; 18 (10) 1090-1095
  • 125 Shaaya EA, Pollack SF, Boronat S, Davis-Cooper S, Zella GC, Thibert RL. Gastrointestinal problems in 15q duplication syndrome. Eur J Med Genet 2015; 58 (03) 191-193
  • 126 Leader G, Forde J, Naughton K, Maher L, Arndt S, Mannion A. Relationships among gastrointestinal symptoms, sleep problems, challenging behaviour, comorbid psychopathology and autism spectrum disorder symptoms in children and adolescents with 15q duplication syndrome. J Intellect Disabil Res 2021; 65 (01) 32-46
  • 127 Kidd SA, Lachiewicz A, Barbouth D. et al. Fragile X syndrome: a review of associated medical problems. Pediatrics 2014; 134 (05) 995-1005
  • 128 Talman LS, Pfeiffer RF. Movement disorders and the gut: a review. Mov Disord Clin Pract (Hoboken) 2022; 9 (04) 418-428
  • 129 Akol I, Gather F, Vogel T. Paving therapeutic avenues for FOXG1 syndrome: untangling genotypes and phenotypes from a molecular perspective. Int J Mol Sci 2022; 23 (02) 954
  • 130 McMahon KQ, Papandreou A, Ma M. et al. Familial recurrences of FOXG1-related disorder: evidence for mosaicism. Am J Med Genet A 2015; 167A (12) 3096-3102
  • 131 Mitter D, Pringsheim M, Kaulisch M. et al. FOXG1 syndrome: genotype-phenotype association in 83 patients with FOXG1 variants. Genet Med 2018; 20 (01) 98-108
  • 132 Siper PM, Kolevzon A, Wang AT, Buxbaum JD, Tavassoli T. A clinician-administered observation and corresponding caregiver interview capturing DSM-5 sensory reactivity symptoms in children with ASD. Autism Res 2017; 10 (06) 1133-1140
  • 133 Lozano R, Gbekie C, Siper PM. et al. FOXP1 syndrome: a review of the literature and practice parameters for medical assessment and monitoring. J Neurodev Disord 2021; 13 (01) 18
  • 134 Meerschaut I, Rochefort D, Revençu N. et al. FOXP1-related intellectual disability syndrome: a recognisable entity. J Med Genet 2017; 54 (09) 613-623
  • 135 Jahromi SR, Togha M, Fesharaki SH. et al. Gastrointestinal adverse effects of antiepileptic drugs in intractable epileptic patients. Seizure 2011; 20 (04) 343-346
  • 136 Allen NM, Mannion M, Conroy J. et al. The variable phenotypes of KCNQ-related epilepsy. Epilepsia 2014; 55 (09) e99-e105
  • 137 Beck VC, Isom LL, Berg AT. Gastrointestinal symptoms and channelopathy-associated epilepsy. J Pediatr 2021; 237: 41-49.e1
  • 138 Inagaki A, Hayashi M, Andharia N, Matsuda H. Involvement of butyrate in electrogenic K+ secretion in rat rectal colon. Pflugers Arch 2019; 471 (02) 313-327
  • 139 Kako H, Martin DP, Cartabuke R, Beebe A, Klamar J, Tobias JD. Perioperative management of a patient with Rett syndrome. Int J Clin Exp Med 2013; 6 (05) 393-403
  • 140 Konarzewski WH, Misso S. Rett syndrome and delayed recovery from anaesthesia. Anaesthesia 1994; 49 (04) 357
  • 141 Tofil NM, Buckmaster MA, Winkler MK, Callans BH, Islam MP, Percy AK. Deep sedation with propofol in patients with Rett syndrome. J Child Neurol 2006; 21 (10) 857-860
  • 142 Fu C, Armstrong D, Marsh E. et al. Consensus guidelines on managing Rett syndrome across the lifespan. BMJ Paediatr Open 2020; 4 (01) e000717
  • 143 Motil KJ, Caeg E, Barrish JO. et al. Gastrointestinal and nutritional problems occur frequently throughout life in girls and women with Rett syndrome. J Pediatr Gastroenterol Nutr 2012; 55 (03) 292-298
  • 144 Wahba G, Schock SC, Claridge E. et al. MeCP2 in the enteric nervous system. Neurogastroenterol Motil 2015; 27 (08) 1156-1161
  • 145 Motil KJ, Khan N, Coon JL. et al. Gastrointestinal health questionnaire for Rett syndrome: tool development. J Pediatr Gastroenterol Nutr 2021; 72 (03) 354-360
  • 146 Motil KJ, Morrissey M, Caeg E, Barrish JO, Glaze DG. Gastrostomy placement improves height and weight gain in girls with Rett syndrome. J Pediatr Gastroenterol Nutr 2009; 49 (02) 237-242
  • 147 Motil KJ, Barrish JO, Lane J. et al. Vitamin D deficiency is prevalent in girls and women with Rett syndrome. J Pediatr Gastroenterol Nutr 2011; 53 (05) 569-574
  • 148 Thapa S, Venkatachalam A, Khan N. et al. Assessment of the gut bacterial microbiome and metabolome of girls and women with Rett syndrome. PLoS One 2021; 16 (05) e0251231
  • 149 Castronovo P, Baccarin M, Ricciardello A. et al. Phenotypic spectrum of NRXN1 mono- and bi-allelic deficiency: a systematic review. Clin Genet 2020; 97 (01) 125-137
  • 150 Shaco-Levy R, Jasperson KW, Martin K. et al. Gastrointestinal polyposis in Cowden syndrome. J Clin Gastroenterol 2017; 51 (07) e60-e67
  • 151 Hansen-Kiss E, Beinkampen S, Adler B. et al. A retrospective chart review of the features of PTEN hamartoma tumour syndrome in children. J Med Genet 2017; 54 (07) 471-478
  • 152 Innella G, Miccoli S, Colussi D. et al. Colorectal polyposis as a clue to the diagnosis of Cowden syndrome: report of two cases and literature review. Pathol Res Pract 2021; 218: 153339
  • 153 Tian X, Chen J, Zhang J. et al. The efficacy of ketogenic diet in 60 Chinese patients with Dravet syndrome. Front Neurol 2019; 10: 625
  • 154 Villas N, Meskis MA, Goodliffe S. Dravet syndrome: characteristics, comorbidities, and caregiver concerns. Epilepsy Behav 2017; 74: 81-86
  • 155 Howell KB, McMahon JM, Carvill GL. et al. SCN2A encephalopathy: a major cause of epilepsy of infancy with migrating focal seizures. Neurology 2015; 85 (11) 958-966
  • 156 Wolff M, Johannesen KM, Hedrich UBS. et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 2017; 140 (05) 1316-1336
  • 157 Cammarata-Scalisi F, Callea M, Martinelli D. et al. Clinical and genetic aspects of Phelan-McDermid syndrome: an interdisciplinary approach to management. Genes (Basel) 2022; 13 (03) 504
  • 158 Alsufiani HM, Alkhanbashi AS, Laswad NAB. et al. Zinc deficiency and supplementation in autism spectrum disorder and Phelan-McDermid syndrome. J Neurosci Res 2022; 100 (04) 970-978
  • 159 Hagmeyer S, Sauer AK, Grabrucker AM. Prospects of zinc supplementation in autism spectrum disorders and shankopathies such as Phelan McDermid syndrome. Front Synaptic Neurosci 2018; 10: 11
  • 160 Sgritta M, Dooling SW, Buffington SA. et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 2019; 101 (02) 246-259.e6
  • 161 Vlaskamp DRM, Shaw BJ, Burgess R. et al. SYNGAP1 encephalopathy: a distinctive generalized developmental and epileptic encephalopathy. Neurology 2019; 92 (02) e96-e107
  • 162 Weldon M, Kilinc M, Lloyd Holder Jr J, Rumbaugh G. The first international conference on SYNGAP1-related brain disorders: a stakeholder meeting of families, researchers, clinicians, and regulators. J Neurodev Disord 2018; 10 (01) 6
  • 163 Berryer MH, Hamdan FF, Klitten LL. et al. Mutations in SYNGAP1 cause intellectual disability, autism, and a specific form of epilepsy by inducing haploinsufficiency. Hum Mutat 2013; 34 (02) 385-394
  • 164 Lo Barco T, De Gaetano L, Santangelo E. et al. SYNGAP1-related developmental and epileptic encephalopathy: the impact on daily life. Epilepsy Behav 2022; 127: 108500
  • 165 Sullivan BJ, Ammanuel S, Kipnis PA, Araki Y, Huganir RL, Kadam SD. Low-dose perampanel rescues cortical gamma dysregulation associated with parvalbumin interneuron GluA2 upregulation in epileptic Syngap1(+/−) mice. Biol Psychiatry 2020; 87 (09) 829-842
  • 166 von Stülpnagel C, Hartlieb T, Borggräfe I. et al. Chewing induced reflex seizures (“eating epilepsy”) and eye closure sensitivity as a common feature in pediatric patients with SYNGAP1 mutations: review of literature and report of 8 cases. Seizure 2019; 65: 131-137
  • 167 Wright D, Kenny A, Eley S, McKechanie AG, Stanfield AC. Clinical and behavioural features of SYNGAP1-related intellectual disability: a parent and caregiver description. J Neurodev Disord 2022; 14 (01) 34
  • 168 Peippo M, Ignatius J. Pitt-Hopkins syndrome. Mol Syndromol 2012; 2 (3-5): 171-180
  • 169 Goodspeed K, Newsom C, Morris MA, Powell C, Evans P, Golla S. Pitt-Hopkins syndrome: a review of current literature, clinical approach, and 23-patient case series. J Child Neurol 2018; 33 (03) 233-244
  • 170 Moulis H, Garsten JJ, Marano AR, Elser JM. Tuberous sclerosis complex: review of the gastrointestinal manifestations and report of an unusual case. Am J Gastroenterol 1992; 87 (07) 914-918
  • 171 Hammad TA, Alastal Y, Khan MA, Rkaine S, Sodeman TC, Nawras A. Tuberous sclerosis complex with multiple gastrointestinal manifestations. Case report and literature review. J Gastrointest Cancer 2016; 47 (04) 442-445
  • 172 Williams CA, Driscoll DJ, Dagli AI. Clinical and genetic aspects of Angelman syndrome. Genet Med 2010; 12 (07) 385-395
  • 173 Glassman LW, Grocott OR, Kunz PA. et al. Prevalence of gastrointestinal symptoms in Angelman syndrome. Am J Med Genet A 2017; 173 (10) 2703-2709
  • 174 Lin JL, Rigdon J, Van Haren K. et al. Gastrostomy tubes placed in children with neurologic impairment: associated morbidity and mortality. J Child Neurol 2021; 36 (09) 727-734