Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2025; 36(15): 2261-2266
DOI: 10.1055/s-0043-1775481
DOI: 10.1055/s-0043-1775481
letter
Emerging Trends in Organic Chemistry: A Focus on India
Silver(I) Oxide Catalyzed C/S–H Trifluoromethylation of Arenes and Heteroarenes with Sodium Trifluoromethanesulfinate
K.S. and K.L.M.N.S.J. are grateful to CSIR-JRF for fellowships. S.K. is grateful for a UGC-JRF fellowship.

Abstract
We present a general and scalable approach for the C(sp2)–H or S–H trifluoromethylation of arenes and heteroarenes. This method employs bench-stable CF3SO2Na as the CF3 source, with Ag2O serving as the catalyst and K2S2O8 as the oxidant. Notably, the protocol features broad functional-group compatibility, mild conditions, and high regioselectivity. Furthermore, it is applicable to biologically relevant molecules such as caffeine, pentoxifylline, ganciclovir triacetate, and mercaptopurine.
Key words
silver catalysis - trifluoromethylation - sodium trifluoromethanesulfinate - late-stage functionalizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775481.
- Supporting Information
Publication History
Received: 28 February 2025
Accepted after revision: 07 April 2025
Article published online:
09 May 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1
Mandal D,
Maji S,
Pal T,
Sinha SK,
Maiti D.
Chem. Commun. 2022; 58: 10442
MissingFormLabel
- 2
Huang Y,
Zhang M,
Lin Q,
Weng Z.
Synlett 2021; 32: 109
MissingFormLabel
- 3
Chen P,
Liu G.
Synthesis 2013; 45: 2919
MissingFormLabel
- 4
Inoue M,
Sumii Y,
Shibata N.
ACS Omega 2020; 5: 10633
MissingFormLabel
- 5
Mei H,
Han J,
Fustero S,
Medio-Simon M,
Sedgwick DM,
Santi C,
Ruzziconi R,
Soloshonok VA.
Chem. Eur. J. 2019; 25: 11797
MissingFormLabel
- 6
Zhou X.-Y,
Zhang M,
Liu Z,
He J.-H,
Wang X.-C.
J. Am. Chem. Soc. 2022; 144: 14463
MissingFormLabel
- 7
Zhou Y,
Wang J,
Gu Z,
Wang S,
Zhu W,
Aceña JL,
Soloshonok VA,
Izawa K,
Liu H.
Chem. Rev. 2016; 116: 422
MissingFormLabel
- 8
Xiao H,
Zhang Z,
Fang Y,
Zhu L,
Li C.
Chem. Soc. Rev. 2021; 50: 6308
MissingFormLabel
- 9
Barata-Vallejo S,
Lantaño B,
Postigo A.
Chem. Eur. J. 2014; 20: 16806
MissingFormLabel
- 10
Wu X.-F,
Neumann H,
Beller M.
Chem. Asian J. 2012; 7: 1744
MissingFormLabel
- 11
Furuya T,
Kamlet AS,
Ritter T.
Nature 2011; 473: 470
MissingFormLabel
- 12
Nagib DA,
MacMillan DW. C.
Nature 2011; 480: 224
MissingFormLabel
- 13
Guyon H,
Chachignon H,
Cahard D.
Beilstein J. Org. Chem. 2017; 13: 2764
MissingFormLabel
- 14
Kaboudin B,
Ghashghaee M,
Bigdeli A,
Farkhondeh A,
Eskandari M,
Esfandiari H.
ChemistrySelect 2021; 6: 12998
MissingFormLabel
- 15
Langlois BR,
Laurent E,
Roidot N.
Tetrahedron Lett. 1991; 32: 7525
MissingFormLabel
- 16
Ji Y,
Brueckl T,
Baxter RD,
Fujiwara Y,
Seiple IB,
Su S,
Blackmond DG,
Baran PS.
Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 14411
MissingFormLabel
- 17
Kumawat S,
Natte K.
J. Catal. 2024; 434: 115506
MissingFormLabel
- 18
Shen J,
Xu J,
He L,
Liang C,
Li W.
Chin. Chem. Lett. 2022; 33: 1227
MissingFormLabel
- 19
Lefebvre Q.
Synlett 2017; 28: 19
MissingFormLabel
- 20
Li L,
Mu X,
Liu W,
Wang Y,
Mi Z,
Li C.-J.
J. Am. Chem. Soc. 2016; 138: 5809
MissingFormLabel
- 21
Kumawat S,
Natte K.
Chem. Commun. 2024; 60: 13935
MissingFormLabel
- 22
Tan X,
Liu Z,
Shen H,
Zhang P,
Zhang Z,
Li C.
J. Am. Chem. Soc. 2017; 139: 12430
MissingFormLabel
- 23
Seo S,
Taylor JB,
Greaney MF.
Chem. Commun. 2013; 49: 6385
MissingFormLabel
- 24
Shi G,
Shao C,
Pan S,
Yu J,
Zhang Y.
Org. Lett. 2015; 17: 38
MissingFormLabel
- 25
Liu J.-B,
Xu X.-H,
Qing F.-L.
Org. Lett. 2015; 17: 5048
MissingFormLabel
- 26
Brochetta M,
Borsari T,
Gandini A,
Porey S,
Deb A,
Casali E,
Chakraborty A,
Zanoni G,
Maiti D.
Chem. Eur. J. 2019; 25: 750
MissingFormLabel
- 27
Liu J,
Zhuang S,
Gui Q,
Chen X,
Yang Z,
Tan Z.
Eur. J. Org. Chem. 2014; 3196
MissingFormLabel
- 28
Yin J,
Li Y,
Zhang R,
Jin K,
Duan C.
Synthesis 2014; 46: 607
MissingFormLabel
- 29
Guillemard L,
Kaplaneris N,
Ackermann L,
Johansson MJ.
Nat. Rev. Chem. 2021; 5: 522
MissingFormLabel
- 30
Castellino NJ,
Montgomery AP,
Danon JJ,
Kassiou M.
Chem. Rev. 2023; 123: 8127
MissingFormLabel
- 31
Trifluoromethylation of C–H and S–H Bonds of (Hetero)arenes; General Procedure
An oven-dried 20 mL borosilicate glass vial equipped with a magnetic stirrer bar was
charged with the appropriate substrate 1 (0.5 mmol), Ag2O (10 mol%), CF3CO2Na (2.0 equiv.), K2S2O8 (3.0 equiv.), and DMSO (4 mL), and the resulting mixture was stirred at r.t. (28
°C) for 24 h. When the reaction was complete, ice-cold H2O (30 mL) was added and the mixture was extracted with EtOAc (2 × 30 mL). The combined
organic phase was washed with sat. brine (2 × 10 mL), dried (Na2SO4), filtered, and concentrated in vacuo. The residue was purified by column chromatography
[silica gel (230–400 or 60–200 mesh)].
1,3,7-Trimethyl-8-(trifluoromethyl)-3,7-dihydro-1H-purine-2,6-dione [8-(Trifluoromethyl)caffeine] (2a)17
Prepared by the general procedure from 1a (0.5 mmol, 97.1 mg) and purified by column chromatography [silica gel (60–200 mesh),
hexane–EtOAc (3:1)] to give a white solid; yield: 102.2 mg (78%).
1H NMR (400 MHz, CDCl3): δ = 4.14 (s, 3 H), 3.57 (s, 3 H), 3.40 (s, 3 H). 19F NMR (376 MHz, CDCl3): δ = –62.41 (s, CF3). 13C NMR (151 MHz, CDCl3): δ = 155.6, 151.4, 146.6, 139.0 (q, J
C–F = 40.8 Hz), 118.3 (q, J
C–F = 270.3 Hz), 109.8, 33.3, 30.0, 28.3.
MissingFormLabel