Semin Liver Dis 2023; 43(04): 446-459
DOI: 10.1055/s-0043-1776760
Review Article

The Hepatic Porphyrias: Revealing the Complexities of a Rare Disease

Oluwashanu Balogun
1   Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
,
Kari Nejak-Bowen
1   Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
2   Pittsburgh Liver Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
› Author Affiliations
Funding This study was funded by the U.S. Department of Health and Human Services, National Institute of Diabetes and Digestive and Kidney Diseases, NIH grant no. 1R01DK124412 to Kari Nejak-Bowen.


Abstract

The porphyrias are a group of metabolic disorders that are caused by defects in heme biosynthesis pathway enzymes. The result is accumulation of heme precursors, which can cause neurovisceral and/or cutaneous photosensitivity. Liver is commonly either a source or target of excess porphyrins, and porphyria-associated hepatic dysfunction ranges from minor abnormalities to liver failure. In this review, the first of a three-part series, we describe the defects commonly found in each of the eight enzymes involved in heme biosynthesis. We also discuss the pathophysiology of the hepatic porphyrias in detail, covering epidemiology, histopathology, diagnosis, and complications. Cellular consequences of porphyrin accumulation are discussed, with an emphasis on oxidative stress, protein aggregation, hepatocellular cancer, and endothelial dysfunction. Finally, we review current therapies to treat and manage symptoms of hepatic porphyria.



Publication History

Article published online:
16 November 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Faller M, Matsunaga M, Yin S, Loo JA, Guo F. Heme is involved in microRNA processing. Nat Struct Mol Biol 2007; 14 (01) 23-29
  • 2 Ferreira GC. Heme Synthesis Encyclopedia of Biological Chemistry. 2nd ed.. Academic Press; 2013
  • 3 Ponka P. Cell biology of heme. Am J Med Sci 1999; 318 (04) 241-256
  • 4 Doyle J, Cooper JS. Physiology, Carbon Dioxide Transport. In: StatPearls. Treasure Island, FL: StatPearls; 2023
  • 5 De Simone G, Varricchio R, Ruberto TF, di Masi A, Ascenzi P. Heme scavenging and delivery: the role of human serum albumin. Biomolecules 2023; 13 (03) 13
  • 6 Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol 2023; DOI: 10.1038/s41580-023-00648-1.
  • 7 Phillips JD. Heme biosynthesis and the porphyrias. Mol Genet Metab 2019; 128 (03) 164-177
  • 8 Kumari A. Heme synthesis. In: Kumari A. ed. Sweet Biochemistry. Academic Press; 2018: 33-36
  • 9 Swenson SA, Moore CM, Marcero JR, Medlock AE, Reddi AR, Khalimonchuk O. From synthesis to utilization: the ins and outs of mitochondrial heme. Cells 2020; 9 (03) 9
  • 10 Warren MJ, Smith AG. Tetrapyrroles Birth, Life and Death. New York, NY: Springer New York; 2009
  • 11 Furuyama K, Kaneko K, Vargas PD. Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. Tohoku J Exp Med 2007; 213 (01) 1-16
  • 12 Bishop DF, Henderson AS, Astrin KH. Human δ-aminolevulinate synthase: assignment of the housekeeping gene to 3p21 and the erythroid-specific gene to the X chromosome. Genomics 1990; 7 (02) 207-214
  • 13 Riddle RD, Yamamoto M, Engel JD. Expression of delta-aminolevulinate synthase in avian cells: separate genes encode erythroid-specific and nonspecific isozymes. Proc Natl Acad Sci U S A 1989; 86 (03) 792-796
  • 14 Balwani M. Erythropoietic protoporphyria and X-linked protoporphyria: pathophysiology, genetics, clinical manifestations, and management. Mol Genet Metab 2019; 128 (03) 298-303
  • 15 Yamamoto M, Hayashi N, Kikuchi G. Evidence for the transcriptional inhibition by heme of the synthesis of delta-aminolevulinate synthase in rat liver. Biochem Biophys Res Commun 1982; 105 (03) 985-990
  • 16 Yamamoto M, Hayashi N, Kikuchi G. Translational inhibition by heme of the synthesis of hepatic delta-aminolevulinate synthase in a cell-free system. Biochem Biophys Res Commun 1983; 115 (01) 225-231
  • 17 Sassa S, Granick S. Induction of -aminolevulinic acid synthetase in chick embryo liver cells in culture. Proc Natl Acad Sci U S A 1970; 67 (02) 517-522
  • 18 Dailey TA, Woodruff JH, Dailey HA. Examination of mitochondrial protein targeting of haem synthetic enzymes: in vivo identification of three functional haem-responsive motifs in 5-aminolaevulinate synthase. Biochem J 2005; 386 (Pt 2): 381-386
  • 19 Yamamoto M, Yew NS, Federspiel M, Dodgson JB, Hayashi N, Engel JD. Isolation of recombinant cDNAs encoding chicken erythroid delta-aminolevulinate synthase. Proc Natl Acad Sci U S A 1985; 82 (11) 3702-3706
  • 20 Hamilton JW, Bement WJ, Sinclair PR, Sinclair JF, Alcedo JA, Wetterhahn KE. Heme regulates hepatic 5-aminolevulinate synthase mRNA expression by decreasing mRNA half-life and not by altering its rate of transcription. Arch Biochem Biophys 1991; 289 (02) 387-392
  • 21 Tian Q, Li T, Hou W, Zheng J, Schrum LW, Bonkovsky HL. Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells. J Biol Chem 2011; 286 (30) 26424-26430
  • 22 Okano S, Zhou L, Kusaka T. et al. Indispensable function for embryogenesis, expression and regulation of the nonspecific form of the 5-aminolevulinate synthase gene in mouse. Genes Cells 2010; 15 (01) 77-89
  • 23 Sahar S, Sassone-Corsi P. Regulation of metabolism: the circadian clock dictates the time. Trends Endocrinol Metab 2012; 23 (01) 1-8
  • 24 Iwadate R, Satoh Y, Watanabe Y. et al. Impairment of heme biosynthesis induces short circadian period in body temperature rhythms in mice. Am J Physiol Regul Integr Comp Physiol 2012; 303 (01) R8-R18
  • 25 Peyer AK, Jung D, Beer M. et al. Regulation of human liver delta-aminolevulinic acid synthase by bile acids. Hepatology 2007; 46 (06) 1960-1970
  • 26 Handschin C, Lin J, Rhee J. et al. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha. Cell 2005; 122 (04) 505-515
  • 27 Kang Z, Ding W, Gong X, Liu Q, Du G, Chen J. Recent advances in production of 5-aminolevulinic acid using biological strategies. World J Microbiol Biotechnol 2017; 33 (11) 200
  • 28 Dailey HA, Meissner PN. Erythroid heme biosynthesis and its disorders. Cold Spring Harb Perspect Med 2013; 3 (04) a011676-a011676
  • 29 Wetmur JG, Bishop DF, Cantelmo C, Desnick RJ. Human delta-aminolevulinate dehydratase: nucleotide sequence of a full-length cDNA clone. Proc Natl Acad Sci U S A 1986; 83 (20) 7703-7707
  • 30 Ishida N, Fujita H, Fukuda Y. et al. Cloning and expression of the defective genes from a patient with delta-aminolevulinate dehydratase porphyria. J Clin Invest 1992; 89 (05) 1431-1437
  • 31 Erskine PT, Senior N, Awan S. et al. X-ray structure of 5-aminolaevulinate dehydratase, a hybrid aldolase. Nat Struct Biol 1997; 4 (12) 1025-1031
  • 32 Wetmur JG, Kaya AH, Plewinska M, Desnick RJ. Molecular characterization of the human delta-aminolevulinate dehydratase 2 (ALAD2) allele: implications for molecular screening of individuals for genetic susceptibility to lead poisoning. Am J Hum Genet 1991; 49 (04) 757-763
  • 33 Jaffe EK, Stith L. ALAD porphyria is a conformational disease. Am J Hum Genet 2007; 80 (02) 329-337
  • 34 Schubert HL, Erskine PT, Cooper JB. 5-Aminolaevulinic acid dehydratase, porphobilinogen deaminase and uroporphyrinogen III synthase. In: Warren MJ, Smith AG. Eds. Tetrapyrroles: Birth, Life and Death. New York, NY: Springer New York; 2009: 43-73
  • 35 Bissell DM, Wang B. Acute hepatic porphyria. J Clin Transl Hepatol 2015; 3 (01) 17-26
  • 36 Kothadia JP, LaFreniere K, Shah JM. Acute hepatic porphyria. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2022
  • 37 Lindberg RL, Porcher C, Grandchamp B. et al. Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria. Nat Genet 1996; 12 (02) 195-199
  • 38 Zhang Y, Xiao H, Xiong Q, Wu C, Li P. Two novel hydroxymethylbilane synthase splicing mutations predispose to acute intermittent porphyria. Int J Mol Sci 2021; 22 (20) 22
  • 39 Stenson PD, Mort M, Ball EV. et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 2017; 136 (06) 665-677
  • 40 Andersson C, Floderus Y, Wikberg A, Lithner F. The W198X and R173W mutations in the porphobilinogen deaminase gene in acute intermittent porphyria have higher clinical penetrance than R167W. A population-based study. Scand J Clin Lab Invest 2000; 60 (07) 643-648
  • 41 Gill R, Kolstoe SE, Mohammed F. et al. Structure of human porphobilinogen deaminase at 2.8 A: the molecular basis of acute intermittent porphyria. Biochem J 2009; 420 (01) 17-25
  • 42 Balwani M, Desnick RJ. The porphyrias: advances in diagnosis and treatment. Hematology (Am Soc Hematol Educ Program) 2012; 19-27
  • 43 Desnick RJ, Balwani M, Anderson KE. Inherited porphyrias. In: Pyeritz RE, Korf BR, Grody WW. eds. Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics, 7th ed. Academic Press; 2021: 373-411
  • 44 Tsai SF, Bishop DF, Desnick RJ. Human uroporphyrinogen III synthase: molecular cloning, nucleotide sequence, and expression of a full-length cDNA. Proc Natl Acad Sci U S A 1988; 85 (19) 7049-7053
  • 45 Kauppinen R, Glass IA, Aizencang G, Astrin KH, Atweh GF, Desnick RJ. Congenital erythropoietic porphyria: prolonged high-level expression and correction of the heme biosynthetic defect by retroviral-mediated gene transfer into porphyric and erythroid cells. Mol Genet Metab 1998; 65 (01) 10-17
  • 46 Glomglao W, Treesucon A, Roothumnong E. et al. Identification of mutations in the uroporphyrinogen III synthase gene in a Thai girl patient with congenital erythropoietic porphyria. Int J Lab Hematol 2015; 37 (02) e44-e47
  • 47 Wenner C, Neumann NJ, Frank J. [Congenital erythropoietic porphyria: an update]. Hautarzt 2016; 67 (03) 216-220
  • 48 Erwin AL, Desnick RJ. Congenital erythropoietic porphyria: recent advances. Mol Genet Metab 2019; 128 (03) 288-297
  • 49 Bishop DF, Clavero S, Mohandas N, Desnick RJ. Congenital erythropoietic porphyria: characterization of murine models of the severe common (C73R/C73R) and later-onset genotypes. Mol Med 2011; 17 (7–8): 748-756
  • 50 Blouin JM, Duchartre Y, Costet P. et al. Therapeutic potential of proteasome inhibitors in congenital erythropoietic porphyria. Proc Natl Acad Sci U S A 2013; 110 (45) 18238-18243
  • 51 Phillips JD, Whitby FG, Kushner JP, Hill CP. Structural basis for tetrapyrrole coordination by uroporphyrinogen decarboxylase. EMBO J 2003; 22 (23) 6225-6233
  • 52 Phillips JD, Bergonia HA, Reilly CA, Franklin MR, Kushner JP. A porphomethene inhibitor of uroporphyrinogen decarboxylase causes porphyria cutanea tarda. Proc Natl Acad Sci U S A 2007; 104 (12) 5079-5084
  • 53 Kappas A. The porphyrias. In: The Metabolic and Molecular Basis of Inherited Disease, 7th ed. McGraw-Hill; 1995: 2103-2159
  • 54 Roméo PH, Raich N, Dubart A. et al. Molecular cloning and nucleotide sequence of a complete human uroporphyrinogen decarboxylase cDNA. J Biol Chem 1986; 261 (21) 9825-9831
  • 55 Fujita H, Sassa S, Toback AC, Kappas A. Immunochemical study of uroporphyrinogen decarboxylase in a patient with mild hepatoerythropoietic porphyria. J Clin Invest 1987; 79 (05) 1533-1537
  • 56 Rudnick S, Phillips J, Bonkovsky H. et al. Hepatoerythropoietic porphyria. In: Adam MP, Mirzaa GM, Pagon RA. et al., eds. GeneReviews. Seattle, WA: University of Washington; 1993
  • 57 Nordmann Y, Grandchamp B, de Verneuil H, Phung L, Cartigny B, Fontaine G. Harderoporphyria: a variant hereditary coproporphyria. J Clin Invest 1983; 72 (03) 1139-1149
  • 58 Lamoril J, Puy H, Whatley SD. et al. Characterization of mutations in the CPO gene in British patients demonstrates absence of genotype-phenotype correlation and identifies relationship between hereditary coproporphyria and harderoporphyria. Am J Hum Genet 2001; 68 (05) 1130-1138
  • 59 Elder GH. Hepatic porphyrias in children. J Inherit Metab Dis 1997; 20 (02) 237-246
  • 60 Lee DS, Flachsová E, Bodnárová M, Demeler B, Martásek P, Raman CS. Structural basis of hereditary coproporphyria. Proc Natl Acad Sci U S A 2005; 102 (40) 14232-14237
  • 61 Wang B, Bissell DM. Hereditary coproporphyria. In: Adam MP, Everman DB, Mirzaa GM. et al, eds. GeneReviews. Seattle, WA: University of Washington; 1993
  • 62 Schmitt C, Gouya L, Malonova E. et al. Mutations in human CPO gene predict clinical expression of either hepatic hereditary coproporphyria or erythropoietic harderoporphyria. Hum Mol Genet 2005; 14 (20) 3089-3098
  • 63 Dailey H. Conversion of coprotoporphyrinogen to protoheme in higher eukaryotes and bacteria. In: Biosynthesis of Heme and Chlorophylls. New York, NY: McGraw-Hill; 1990: 123-161
  • 64 Deybach JC, de Verneuil H, Nordmann Y. The inherited enzymatic defect in porphyria variegata. Hum Genet 1981; 58 (04) 425-428
  • 65 von und zu Fraunberg M, Timonen K, Mustajoki P, Kauppinen R. Clinical and biochemical characteristics and genotype-phenotype correlation in Finnish variegate porphyria patients. Eur J Hum Genet 2002; 10 (10) 649-657
  • 66 Singal AK, Anderson KE. Variegate porphyria. In: GeneReviews [Internet]. Seattle, WA: University of Washington; 2013
  • 67 Shaw GC, Cope JJ, Li L. et al. Mitoferrin is essential for erythroid iron assimilation. Nature 2006; 440 (7080) 96-100
  • 68 Cacheux V, Martasek P, Fougerousse F. et al. Localization of the human coproporphyrinogen oxidase gene to chromosome band 3q12. Hum Genet 1994; 94 (05) 557-559
  • 69 Gouya L, Puy H, Lamoril J. et al. Inheritance in erythropoietic protoporphyria: a common wild-type ferrochelatase allelic variant with low expression accounts for clinical manifestation. Blood 1999; 93 (06) 2105-2110
  • 70 Rüfenacht UB, Gouya L, Schneider-Yin X. et al. Systematic analysis of molecular defects in the ferrochelatase gene from patients with erythropoietic protoporphyria. Am J Hum Genet 1998; 62 (06) 1341-1352
  • 71 Stenson PD, Ball EV, Mort M. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 2003; 21 (06) 577-581
  • 72 Balwani M, Bloomer J, Desnick R. et al. Erythropoietic protoporphyria, autosomal recessive. In: Adam MP, Ardinger HH, Pagon RA. et al, eds. GeneReviews(®). Seattle, WA: University of Washington; 1993
  • 73 Levitt DG, Levitt MD. Quantitative assessment of the multiple processes responsible for bilirubin homeostasis in health and disease. Clin Exp Gastroenterol 2014; 7: 307-328
  • 74 Bhogal HK, Sanyal AJ. The molecular pathogenesis of cholestasis in sepsis. Front Biosci (Elite Ed) 2013; 5 (01) 87-96
  • 75 van de Steeg E, Wagenaar E, van der Kruijssen CM. et al. Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J Clin Invest 2010; 120 (08) 2942-2952
  • 76 Muchova L, Vanova K, Zelenka J. et al. Bile acids decrease intracellular bilirubin levels in the cholestatic liver: implications for bile acid-mediated oxidative stress. J Cell Mol Med 2011; 15 (05) 1156-1165
  • 77 Hundt M, Basit H, John S. Physiology, bile secretion. In: StatPearls. Treasure Island, FL: StatPearls; 2023
  • 78 Bechara EJH, Ramos LD, Stevani CV. 5-Aminolevulinic acid: a matter of life and caveats. J Photochem Photobiol 2021; 7: 100036
  • 79 Brennan MJW, Cantrill RC. δ-Aminolaevulinic acid is a potent agonist for GABA autoreceptors. Nature 1979; 280 (5722) 514-515
  • 80 Soonawalla ZF, Orug T, Badminton MN. et al. Liver transplantation as a cure for acute intermittent porphyria. Lancet 2004; 363 (9410) 705-706
  • 81 Dowman JK, Gunson BK, Mirza DF, Bramhall SR, Badminton MN, Newsome PN. UK Liver Selection and Allocation Working Party. Liver transplantation for acute intermittent porphyria is complicated by a high rate of hepatic artery thrombosis. Liver Transpl 2012; 18 (02) 195-200
  • 82 Bylesjö I, Wikberg A, Andersson C. Clinical aspects of acute intermittent porphyria in northern Sweden: a population-based study. Scand J Clin Lab Invest 2009; 69 (05) 612-618
  • 83 Baravelli CM, Sandberg S, Aarsand AK, Nilsen RM, Tollånes MC. Acute hepatic porphyria and cancer risk: a nationwide cohort study. J Intern Med 2017; 282 (03) 229-240
  • 84 Bonkovsky HL, Maddukuri VC, Yazici C. et al. Acute porphyrias in the USA: features of 108 subjects from porphyrias consortium. Am J Med 2014; 127 (12) 1233-1241
  • 85 Jean G, Lambertenghi G, Ranzi T. Ultrastructural study of the liver in hepatic porphyria. J Clin Pathol 1968; 21 (04) 501-507
  • 86 Singal AK. Porphyria cutanea tarda: recent update. Mol Genet Metab 2019; 128 (03) 271-281
  • 87 Bleasel NR, Varigos GA. Porphyria cutanea tarda. Australas J Dermatol 2000; 41 (04) 197-206 , quiz 207–208
  • 88 Mohan G, Madan A. Ala dehydratase deficiency porphyria. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2023
  • 89 Demasi M, Penatti CA, DeLucia R, Bechara EJ. The prooxidant effect of 5-aminolevulinic acid in the brain tissue of rats: implications in neuropsychiatric manifestations in porphyrias. Free Radic Biol Med 1996; 20 (03) 291-299
  • 90 Maitra D, Bragazzi Cunha J, Elenbaas JS, Bonkovsky HL, Shavit JA, Omary MB. Porphyrin-induced protein oxidation and aggregation as a mechanism of porphyria-associated cell injury. Cell Mol Gastroenterol Hepatol 2019; 8 (04) 535-548
  • 91 Khan AA, Quigley JG. Control of intracellular heme levels: heme transporters and heme oxygenases. Biochim Biophys Acta 2011; 1813 (05) 668-682
  • 92 Carchman EH, Rao J, Loughran PA, Rosengart MR, Zuckerbraun BS. Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology 2011; 53 (06) 2053-2062
  • 93 Maitra D, Pinsky BM, Soherawardy A, Zheng H, Banerjee R, Omary MB. Protein-aggregating ability of different protoporphyrin-IX nanostructures is dependent on their oxidation and protein-binding capacity. J Biol Chem 2021; 297 (01) 100778
  • 94 Schneider-Yin X, van Tuyll van Serooskerken AM, Went P. et al. Hepatocellular carcinoma in variegate porphyria: a serious complication. Acta Derm Venereol 2010; 90 (05) 512-515
  • 95 Andant C, Puy H, Bogard C. et al. Hepatocellular carcinoma in patients with acute hepatic porphyria: frequency of occurrence and related factors. J Hepatol 2000; 32 (06) 933-939
  • 96 McKenna DB, Browne M, O'Donnell R, Murphy GM. Porphyria cutanea tarda and hematologic malignancy – a report of 4 cases. Photodermatol Photoimmunol Photomed 1997; 13 (04) 143-146
  • 97 Guida CC, Nardella M, Fiorentino L. et al. Intrahepatic cholangiocarcinoma and acute intermittent porphyria: a case report. J Clin Med 2023; 12 (09) 12
  • 98 Peoc'h K, Manceau H, Karim Z. et al. Hepatocellular carcinoma in acute hepatic porphyrias: a Damocles sword. Mol Genet Metab 2019; 128 (03) 236-241
  • 99 Ramai D, Deliwala SS, Chandan S. et al. Risk of hepatocellular carcinoma in patients with porphyria: a systematic review. Cancers (Basel) 2022; 14 (12) 14
  • 100 Saberi B, Naik H, Overbey JR. et al. Hepatocellular carcinoma in acute hepatic porphyrias: results from the longitudinal study of the U.S. Porphyrias Consortium. Hepatology 2021; 73 (05) 1736-1746
  • 101 Ricci A, Sandri G, Marcacci M. et al. Endothelial dysfunction in acute hepatic porphyrias. Diagnostics (Basel) 2022; 12 (06) 12
  • 102 Kizilaslan EZ, Ghadge NM, Martinez A. et al. Acute intermittent porphyria's symptoms and management: a narrative review. Cureus 2023; 15 (03) e36058
  • 103 Marsden JT, Guppy S, Stein P. et al. Audit of the use of regular haem arginate infusions in patients with acute porphyria to prevent recurrent symptoms. JIMD Rep 2015; 22: 57-65
  • 104 Fontanellas A, Ávila MA, Anderson KE, Deybach JC. Current and innovative emerging therapies for porphyrias with hepatic involvement. J Hepatol 2019; 71 (02) 422-433
  • 105 Anderson KE, Collins S. Open-label study of hemin for acute porphyria: clinical practice implications. Am J Med 2006; 119 (09) 801.e19-801.e24
  • 106 Schmitt C, Lenglet H, Yu A. et al. Recurrent attacks of acute hepatic porphyria: major role of the chronic inflammatory response in the liver. J Intern Med 2018; 284 (01) 78-91
  • 107 Gonzalez-Mosquera LF, Sonthalia S. Acute intermittent porphyria. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2023
  • 108 Willandt B, Langendonk JG, Biermann K. et al. Liver fibrosis associated with iron accumulation due to long-term heme-arginate treatment in acute intermittent porphyria: a case series. JIMD Rep 2016; 25: 77-81
  • 109 Ma E, Mar V, Varigos G, Nicoll A, Ross G. Haem arginate as effective maintenance therapy for hereditary coproporphyria. Australas J Dermatol 2011; 52 (02) 135-138
  • 110 Tenhunen R, Tokola O, Lindén IB. Haem arginate: a new stable haem compound. J Pharm Pharmacol 1987; 39 (10) 780-786
  • 111 Balwani M, Sardh E, Ventura P. et al; ENVISION Investigators. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N Engl J Med 2020; 382 (24) 2289-2301
  • 112 Bissell DM, Anderson KE, Bonkovsky HL. Porphyria. N Engl J Med 2017; 377 (09) 862-872
  • 113 Ramanujam VS, Anderson KE. Porphyria diagnostics - Part 1: A brief overview of the porphyrias. Curr Protoc Hum Genet 2015; 86: 20.1 , 26