J Neurol Surg B Skull Base
DOI: 10.1055/s-0043-57248
Original Article

Assessment of the Anterior Clinoid Process and Optic Strut in Chiari Malformation Type I: A Computed Tomography Study

Hakan Özalp
1   Department of Neurosurgery, Istanbul Medipol University Faculty of Medicine, İstanbul, Turkey
,
Onur Özgüral
2   Department of Neurosurgery, Ankara University Faculty of Medicine, Ankara, Turkey
,
2   Department of Neurosurgery, Ankara University Faculty of Medicine, Ankara, Turkey
,
Ayşenur İnceoğlu
3   Department of Anatomy, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
,
Sibel Özalp
4   Department of Medical Laboratory Techniques, Istanbul Medipol University School of Vocation, İstanbul, Turkey
,
Ercan Armağan
5   Department of Neurosurgery, Silivri Anadolu Hospital, İstanbul, Turkey
,
Hadice Uçar
3   Department of Anatomy, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
,
3   Department of Anatomy, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
› Author Affiliations

Abstract

Objective This study aimed to evaluate morphological features of the anterior clinoid process (ACP) and the optic strut (OS) in Chiari malformation Type I (CM-I).

Methods The study universe consisted of computed tomography images of 41 CM-I patients and 45 normal subjects. Comparison of the parameters for CM-I and the control group was performed with the Student's t-test. A “p < 0.05” was accepted as the significance level.

Results ACP length was smaller in CM-I than the control group (p < 0.001). In contrast to ACP length, ACP angle (p < 0.001), OS length (p = 0.022), and the distance between ACP and OS (p = 0.020) were found greater in CM-I in comparison to the control group (p < 0.05). ACP width (p = 0.233) and OS width (p = 0.376) were similar in both groups. ACP pneumatization in CM-I group was found as 12.20%, whereas in the control group as 8.90%. Two different types about the pneumatization were identified in CM-I group (Type 1: 4.9% and Type 2: 7.3%), whereas three different types in the control group (Type 1: 3.3%, Type 2: 4.4%, and Type 3: 1.1%). Relative to ACP, three different types about OS position were identified in CM-I group (Type C: 31.70%, Type D: 64.60%, and Type E: 3.70%) and the control group (Type C: 7.80%, Type D: 64.40%, and Type E: 27.80%).

Conclusions Shorter ACP, wide-angled ACP, longer OS, and more anteriorly located OS were found in CM-I group compared with the normal group. Our findings showed that the pneumatization of ACP was not affected by CM-I.

Ethical Approval

The Clinical Research Ethics Committee of Ankara University approved this retrospective CT work ethically (confirmation date September 22, 2022, no. 108-521-22).


Informed Consent

Approval from the Institutional Review Board was obtained and in keeping with the policies for a retrospective review; informed consent was not required.


Author Contributions

Conceptualization: H.Ö., O.Ö., E.A., S.Ö.; methodology: H.Ö., S.Ö., O.Ö., E.A.; data collection: O.Ö., B.C.A.; analysis and interpretation of results: H.U., Aİ, O.B.; writing original draft: H.Ö., O.B., H.U., Aİ; critical revision of the manuscript: H.Ö., O.Ö., O.B.; approval of the final version of the manuscript: all authors.




Publication History

Received: 23 January 2023

Accepted: 27 March 2023

Article published online:
19 April 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Güler TM, Yılmazlar S, Özgün G. Anatomical aspects of optic nerve decompression in transcranial and transsphenoidal approach. J Craniomaxillofac Surg 2019; 47 (04) 561-569
  • 2 Onofrey CB, Tse DT, Johnson TE. et al. Optic canal decompression: a cadaveric study of the effects of surgery. Ophthalmic Plast Reconstr Surg 2007; 23 (04) 261-266
  • 3 Maurer J, Hinni M, Mann W, Pfeiffer N. Optic nerve decompression in trauma and tumor patients. Eur Arch Otorhinolaryngol 1999; 256 (07) 341-345
  • 4 Taha AN, Erkmen K, Dunn IF, Pravdenkova S, Al-Mefty O. Meningiomas involving the optic canal: pattern of involvement and implications for surgical technique. Neurosurg Focus 2011; 30 (05) E12
  • 5 Locatelli M, Caroli M, Pluderi M. et al. Endoscopic transsphenoidal optic nerve decompression: an anatomical study. Surg Radiol Anat 2011; 33 (03) 257-262
  • 6 Beer-Furlan A, Evins AI, Rigante L. et al. Endoscopic extradural anterior clinoidectomy and optic nerve decompression through a pterional port. J Clin Neurosci 2014; 21 (05) 836-840
  • 7 Yilmazlar S, Saraydaroglu O, Korfali E. Anatomical aspects in the transsphenoidal-transethmoidal approach to the optic canal: an anatomic-cadaveric study. J Craniomaxillofac Surg 2012; 40 (07) e198-e205
  • 8 Locatelli M, Di Cristofori A, Draghi R. et al. Is complex sphenoidal sinus anatomy a contraindication to a transsphenoidal approach for resection of sellar lesions? Case series and review of the literature. World Neurosurg 2017; 100: 173-179
  • 9 Puzzilli F, Ruggeri A, Mastronardi L, Agrillo A, Ferrante L. Anterior clinoidal meningiomas: report of a series of 33 patients operated on through the pterional approach. Neuro-oncol 1999; 1 (03) 188-195
  • 10 Boyan N, Ozsahin E, Kizilkanat E, Tekdemir I, Soames R, Oğuz O. Surgical importance of the morphometry of the anterior clinoid process, optic strut, caroticoclinoid foramen, and interclinoid osseous bridge. Neurosurg Q 2011; 21: 133-136
  • 11 Dolenc V. Direct microsurgical repair of intracavernous vascular lesions. J Neurosurg 1983; 58 (06) 824-831
  • 12 Kapur E, Mehić A. Anatomical variations and morphometric study of the optic strut and the anterior clinoid process. Bosn J Basic Med Sci 2012; 12 (02) 88-93
  • 13 Beger O, Taghipour P, Çakır S. et al. Fetal anatomy of the optic strut and prechiasmatic sulcus with a clinical perspective. World Neurosurg 2020; 136: e625-e634
  • 14 Beger O, Ten B, Balcı Y. et al. A computed tomography study of the prechiasmatic sulcus anatomy in children. World Neurosurg 2020; 141: e118-e132
  • 15 Sgouros S, Kountouri M, Natarajan K. Skull base growth in children with Chiari malformation Type I. J Neurosurg 2007; 107 (3, Suppl): 188-192
  • 16 Nwotchouang BST, Eppelheimer MS, Bishop P. et al. Three-dimensional CT morphometric image analysis of the clivus and sphenoid sinus in Chiari malformation type I. Ann Biomed Eng 2019; 47 (11) 2284-2295
  • 17 Kerr RG, Tobler WD, Leach JL. et al. Anatomic variation of the optic strut: classification schema, radiologic evaluation, and surgical relevance. J Neurol Surg B Skull Base 2012; 73 (06) 424-429
  • 18 Lee HY, Chung IH, Choi BY, Lee KS. Anterior clinoid process and optic strut in Koreans. Yonsei Med J 1997; 38 (03) 151-154
  • 19 Suprasanna K, Ravikiran SR, Kumar A, Chavadi C, Pulastya S. Optic strut and para-clinoid region—assessment by multidetector computed tomography with multiplanar and 3 dimensional reconstructions. J Clin Diagn Res 2015; 9 (10) TC06-TC09
  • 20 Beger O, Hamzaoğlu V, Özalp H. et al. Anatomy of the anterior clinoid process in human fetuses. J Craniofac Surg 2020; 31 (05) 1469-1473
  • 21 Cecen A, Celikoglu E, Is M, Kale AC, Eroğlu BT. Pre-operative measurement of the morphometry and angles of the anterior clinoid process (ACP) for aneurysm surgery. Int J Morphol 2016; 34: 1333-1338
  • 22 Huynh-Le P, Natori Y, Sasaki T. Surgical anatomy of the anterior clinoid process. J Clin Neurosci 2004; 11 (03) 283-287
  • 23 Abuzayed B, Tanriover N, Biceroglu H. et al. Pneumatization degree of the anterior clinoid process: a new classification. Neurosurg Rev 2010; 33 (03) 367-373 , discussion 374
  • 24 Kahn EN, Muraszko KM, Maher CO. Prevalence of Chiari I malformation and syringomyelia. Neurosurg Clin N Am 2015; 26 (04) 501-507
  • 25 AvŞar T, ÇaliŞ Ş, Yilmaz B, Demİrcİ OtluoĞlu G, Holyavkİn C, KiliÇ T. Genome-wide identification of Chiari malformation type I associated candidate genes and chromosomal variations. Turk J Biol 2020; 44 (06) 449-456
  • 26 Aydin S, Hanimoglu H, Tanriverdi T, Yentur E, Kaynar MY. Chiari type I malformations in adults: a morphometric analysis of the posterior cranial fossa. Surg Neurol 2005; 64 (03) 237-241 , discussion 241
  • 27 Schady W, Metcalfe RA, Butler P. The incidence of craniocervical bony anomalies in the adult Chiari malformation. J Neurol Sci 1987; 82 (1-3): 193-203
  • 28 Nishikawa M, Sakamoto H, Hakuba A, Nakanishi N, Inoue Y. Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg 1997; 86 (01) 40-47
  • 29 Trigylidas T, Baronia B, Vassilyadi M, Ventureyra EC. Posterior fossa dimension and volume estimates in pediatric patients with Chiari I malformations. Childs Nerv Syst 2008; 24 (03) 329-336
  • 30 Tubbs RS, McGirt MJ, Oakes WJ. Surgical experience in 130 pediatric patients with Chiari I malformations. J Neurosurg 2003; 99 (02) 291-296
  • 31 Sperling NM, Franco Jr RA, Milhorat TH. Otologic manifestations of Chiari I malformation. Otol Neurotol 2001; 22 (05) 678-681
  • 32 Patel D, Saindane A, Oyesiku N, Hu R. Variant sella morphology and pituitary gland height in adult patients with Chiari II malformation: potential pitfall in MRI evaluation. Clin Imaging 2020; 64: 24-28
  • 33 Guthikonda B, Tobler Jr WD, Froelich SC. et al. Anatomic study of the prechiasmatic sulcus and its surgical implications. Clin Anat 2010; 23 (06) 622-628
  • 34 Abozed M, Alsulaiti G, Almannaei F, Raza A, El Beltagi A, Ayyad A. Anterior clinoid mucocele causing optic neuropathy: a case report and review of literature. eNeurologicalSci 2017; 7: 57-59
  • 35 Beretta F, Sepahi AN, Zuccarello M, Tomsick TA, Keller JT. Radiographic imaging of the distal dural ring for determining the intradural or extradural location of aneurysms. Skull Base 2005; 15 (04) 253-261 , discussion 261–262
  • 36 Kier EL, Rothman SL. Radiologically significant anatomic variation of the developing sphenoid in humans. In: Bosma JF, ed. Symposium on the Development of the Basicranium. Bethesda: U.S. Department of Health Education, and Welfare, Public Health Service, National Institutes of Health, 1976: 107-140
  • 37 Mikami T, Minamida Y, Koyanagi I, Baba T, Houkin K. Anatomical variations in pneumatization of the anterior clinoid process. J Neurosurg 2007; 106 (01) 170-174
  • 38 Nandapalan V, Watson ID, Swift AC. Beta-2-transferrin and cerebrospinal fluid rhinorrhoea. Clin Otolaryngol Allied Sci 1996; 21 (03) 259-264
  • 39 Dagtekin A, Avci E, Uzmansel D. et al. Microsurgical anatomy and variations of the anterior clinoid process. Turk Neurosurg 2014; 24 (04) 484-493
  • 40 Andaluz N, Beretta F, Bernucci C, Keller JT, Zuccarello M. Evidence for the improved exposure of the ophthalmic segment of the internal carotid artery after anterior clinoidectomy: morphometric analysis. Acta Neurochir (Wien) 2006; 148 (09) 971-975 , discussion 975–976
  • 41 Cheng Y, Wang C, Yang F, Duan Y, Zhang S, Wang J. Anterior clinoid process and the surrounding structures. J Craniofac Surg 2013; 24 (06) 2098-2102
  • 42 da Costa MDS, de Oliveira Santos BF, de Araujo Paz D. et al. Anatomical variations of the anterior clinoid process: a study of 597 skull base computerized tomography scans. Oper Neurosurg (Hagerstown) 2016; 12 (03) 289-297
  • 43 Hayashi N, Masuoka T, Tomita T, Sato H, Ohtani O, Endo S. Surgical anatomy and efficient modification of procedures for selective extradural anterior clinoidectomy. Minim Invasive Neurosurg 2004; 47 (06) 355-358
  • 44 Hunnargi S, Ray B, Pai SR, Siddaraju KS. Metrical and non-metrical study of anterior clinoid process in South Indian adult skulls. Surg Radiol Anat 2008; 30 (05) 423-428
  • 45 Lee HW, Park HS, Yoo KS, Kim KU, Song YJ. Measurement of critical structures around paraclinoidal area: a cadaveric morphometric study. J Korean Neurosurg Soc 2013; 54 (01) 14-18
  • 46 Sabanciogullari V, Tastemur Y, Salk I, Dogruyol G, Cimen M. Assessment of dimensions of pneumatisation of the anterior clinoid process in middle Anatolian population by computed tomography. Folia Morphol (Warsz) 2018; 77 (03) 558-563
  • 47 Sibuor W, Cheruiyot I, Munguti J, Kigera J, Gikenye G. Morphology of the anterior clinoid process in a select Kenyan population. Anat J Africa 2018; 7: 1132-1137
  • 48 Souza AD, Ankolekar VH, Nayak N, Hosapatna M, Souza AS. Morphometric study of anterior clinoid process and optic strut and the ossification of carotico-clinoid ligament with their clinical importance. J Clin Diagn Res 2016; 10 (04) AC05-AC07
  • 49 Adanir SS, Ceylan ES, İnceoğlu A. et al. Change in the location of the optic strut relative to the anterior clinoid process pneumatization. J Craniofac Surg 2022; 33 (06) 1924-1928
  • 50 Gupta N, Priya A. Anterior clinoid process and optic strut-a morphometric study. J Evol Med Dent Sci 2018; 7: 3577-3581
  • 51 Budu V, Mogoantă CA, Fănuţă B, Bulescu I. The anatomical relations of the sphenoid sinus and their implications in sphenoid endoscopic surgery. Rom J Morphol Embryol 2013; 54 (01) 13-16
  • 52 Arslan H, Aydinlioğlu A, Bozkurt M, Egeli E. Anatomic variations of the paranasal sinuses: CT examination for endoscopic sinus surgery. Auris Nasus Larynx 1999; 26 (01) 39-48
  • 53 Bolger WE, Butzin CA, Parsons DS. Paranasal sinus bony anatomic variations and mucosal abnormalities: CT analysis for endoscopic sinus surgery. Laryngoscope 1991; 101 (1 Pt 1): 56-64
  • 54 Citardi MJ, Gallivan RP, Batra PS. et al. Quantitative computer-aided computed tomography analysis of sphenoid sinus anatomical relationships. Am J Rhinol 2004; 18 (03) 173-178
  • 55 DeLano MC, Fun FY, Zinreich SJ. Relationship of the optic nerve to the posterior paranasal sinuses: a CT anatomic study. AJNR Am J Neuroradiol 1996; 17 (04) 669-675
  • 56 Gean AD, Pile-Spellman J, Heros RC. A pneumatized anterior clinoid mimicking an aneurysm on MR imaging. Report of two cases. J Neurosurg 1989; 71 (01) 128-132
  • 57 Senyuva C, Yücel A, Okur I, Cansiz H, Sanus Z. Free rectus abdominis muscle flap for the treatment of complications after neurosurgical procedures. J Craniofac Surg 1996; 7 (04) 317-321
  • 58 Takahashi JA, Kawarazaki A, Hashimoto N. Intradural en-bloc removal of the anterior clinoid process. Acta Neurochir (Wien) 2004; 146 (05) 505-509
  • 59 Szmuda T, Sloniewski P, Baczalska A. et al. The pneumatisation of anterior clinoid process is not associated with any predictors that might be recognised preoperatively. Folia Morphol (Warsz) 2013; 72 (02) 100-106
  • 60 Cetinkaya EA, Koc K, Kucuk MF, Koc P, Muluk NB, Cingi C. Calculation of an optic nerve injury risk profile before sphenoid sinus surgery. J Craniofac Surg 2017; 28 (01) e75-e78